Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
B
bgrimm-string-inference
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
CI / CD Analytics
Repository Analytics
Value Stream Analytics
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
dasharatha.vamshi
bgrimm-string-inference
Commits
95c1d2b6
Commit
95c1d2b6
authored
Sep 18, 2023
by
dasharatha.vamshi
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added get tags
parent
b34dc33e
Changes
4
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
185 additions
and
151 deletions
+185
-151
input_components/get_tags_component/component.yml
input_components/get_tags_component/component.yml
+40
-28
input_components/get_tags_component/src/__pycache__/program.cpython-39.pyc
...get_tags_component/src/__pycache__/program.cpython-39.pyc
+0
-0
input_components/get_tags_component/src/program.py
input_components/get_tags_component/src/program.py
+40
-29
pipeline.yml
pipeline.yml
+105
-94
No files found.
input_components/get_tags_component/component.yml
View file @
95c1d2b6
...
...
@@ -30,14 +30,28 @@ implementation:
city = os.getenv("CITY")
db_ = os.getenv("MONGO_DB")
print(pipeline_param)
print("--",pipeline_param["MONGO_URI"])
print("--",
pipeline_param["MONGO_URI"])
# collections
collection_ = os.getenv("MONGO_COLLECTION")
mongo_uri_ = pipeline_param['MONGO_URI']
print("mongo_uri",mongo_uri_)
print("mongo_uri",
mongo_uri_)
project_id_ = pipeline_param['PROJECT_ID']
query_filter_ = pipeline_param['QUERY_FILTER']
try:
class CommonConstants:
bgrimm_string_level_tags = 'bgrimm_string_level_tags'
panel_id = 'panel_id'
sub_id = 'sub_id'
inv_id_mppt_id = 'inv_id_mppt_id'
tags_property_raw = 'raw'
tags_property_predicted = 'predicted'
tags_property_efficiency = 'efficiency'
bgrim_tags_property_efficiency = 'Efficiency'
tags_property_efficiency_inv = 'efficiency'
tags_property_efficiency_plant = 'efficiency_plant'
mppt_coefficients = 'mppt_coefficients'
class MongoConstants:
# DB
db = db_
...
...
@@ -92,49 +106,47 @@ implementation:
except Exception as e:
logger.exception(f'Exception - {e}')
tracemalloc.clear_traces()
mongo_conn = MongoConnect(uri=Mongo.mongo_uri, database=MongoConstants.db,
collection=MongoConstants.collection)
if mongo_conn is None:
logger.info(f'mongodb is not connected, please check')
else:
logger.info(f'mongodb is connected, mongo conn - {mongo_conn}')
tracemalloc.clear_traces()
logger.info(f'mongo conn - {mongo_conn}')
df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_raw}]})['input_data'], orient='index')
df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
{"city": city},
{"tags_property": "raw"}]})
['input_data'], orient='index')
df_predicted_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_predicted}]})['input_data'], orient='index')
df_predicted_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
{"city": city},
{"tags_property": "predicted"}]})
['input_data'], orient='index')
df_efficiency_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_efficiency}]})['input_data'], orient='index')
df_raw_tags.reset_index(inplace=True)
df_raw_tags.rename(columns={'index': 'tag_name'}, inplace=True)
df_predicted_tags.reset_index(inplace=True)
df_predicted_tags.rename(columns={'index': 'tag_name'}, inplace=True)
df_efficiency_tags.reset_index(inplace=True)
df_efficiency_tags.rename(columns={'index': 'tag_name'}, inplace=True)
try:
# df_coefficients = pd.DataFrame.from_dict(
# mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
# {"city": city},
# {"tags_property":
# "mppt_coefficients"}]})
# ['input_data'], orient='index')
df_coefficients = pd.DataFrame()
except Exception as er:
logger.exception(f"Coefficient dataframe unavailable with message: {er}")
df_coefficients = pd.DataFrame()
# df_coefficients = pd.DataFrame.from_dict(mongo_conn.find_one(
# {"$and": [{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
# {"tags_property": CommonConstants.mppt_coefficients}]})['input_data'], orient='index')
del mongo_conn
df_coefficients.reset_index(inplace=True)
df_coefficients.rename(columns={'index': 'inv_id_mppt_id'}, inplace=True)
# df_coefficients.reset_index(inplace=True)
# df_coefficients.rename(columns={'index': CommonConstants.inv_id_mppt_id}, inplace=True)
df_coefficients = pd.DataFrame()
tracemalloc.clear_traces()
tracemalloc.get_traced_memory()
del mongo_conn
final_dict = {"raw": df_raw_tags.to_dict('records'), "predicted": df_predicted_tags.to_dict('records'),
"coefficients": df_coefficients.to_dict('records')}
"coefficients": df_coefficients.to_dict('records'),
"efficiency": df_efficiency_tags.to_dict('records')}
print(final_dict)
return final_dict
except Exception as e:
...
...
input_components/get_tags_component/src/__pycache__/program.cpython-39.pyc
View file @
95c1d2b6
No preview for this file type
input_components/get_tags_component/src/program.py
View file @
95c1d2b6
def
get_tags_function
(
pipeline_param
:
dict
)
->
dict
:
import
pandas
as
pd
from
loguru
import
logger
...
...
@@ -9,14 +8,28 @@ def get_tags_function(pipeline_param: dict) -> dict:
city
=
os
.
getenv
(
"CITY"
)
db_
=
os
.
getenv
(
"MONGO_DB"
)
print
(
pipeline_param
)
print
(
"--"
,
pipeline_param
[
"MONGO_URI"
])
print
(
"--"
,
pipeline_param
[
"MONGO_URI"
])
# collections
collection_
=
os
.
getenv
(
"MONGO_COLLECTION"
)
mongo_uri_
=
pipeline_param
[
'MONGO_URI'
]
print
(
"mongo_uri"
,
mongo_uri_
)
print
(
"mongo_uri"
,
mongo_uri_
)
project_id_
=
pipeline_param
[
'PROJECT_ID'
]
query_filter_
=
pipeline_param
[
'QUERY_FILTER'
]
try
:
class
CommonConstants
:
bgrimm_string_level_tags
=
'bgrimm_string_level_tags'
panel_id
=
'panel_id'
sub_id
=
'sub_id'
inv_id_mppt_id
=
'inv_id_mppt_id'
tags_property_raw
=
'raw'
tags_property_predicted
=
'predicted'
tags_property_efficiency
=
'efficiency'
bgrim_tags_property_efficiency
=
'Efficiency'
tags_property_efficiency_inv
=
'efficiency'
tags_property_efficiency_plant
=
'efficiency_plant'
mppt_coefficients
=
'mppt_coefficients'
class
MongoConstants
:
# DB
db
=
db_
...
...
@@ -71,49 +84,47 @@ def get_tags_function(pipeline_param: dict) -> dict:
except
Exception
as
e
:
logger
.
exception
(
f
'Exception - {e}'
)
tracemalloc
.
clear_traces
()
mongo_conn
=
MongoConnect
(
uri
=
Mongo
.
mongo_uri
,
database
=
MongoConstants
.
db
,
collection
=
MongoConstants
.
collection
)
if
mongo_conn
is
None
:
logger
.
info
(
f
'mongodb is not connected, please check'
)
else
:
logger
.
info
(
f
'mongodb is connected, mongo conn - {mongo_conn}'
)
tracemalloc
.
clear_traces
()
logger
.
info
(
f
'mongo conn - {mongo_conn}'
)
df_raw_tags
=
pd
.
DataFrame
.
from_dict
(
mongo_conn
.
find_one
({
"$and"
:
[{
"id"
:
"bgrimm_string_level_tags"
},
{
"city"
:
city
},
{
"tags_property"
:
"raw"
}]})
[
'input_data'
],
orient
=
'index'
)
df_raw_tags
=
pd
.
DataFrame
.
from_dict
(
mongo_conn
.
find_one
({
"$and"
:
[
{
"id"
:
CommonConstants
.
bgrimm_string_level_tags
},
{
"city"
:
city
},
{
"tags_property"
:
CommonConstants
.
tags_property_raw
}]})[
'input_data'
],
orient
=
'index'
)
df_predicted_tags
=
pd
.
DataFrame
.
from_dict
(
mongo_conn
.
find_one
({
"$and"
:
[{
"id"
:
"bgrimm_string_level_tags"
},
{
"city"
:
city
},
{
"tags_property"
:
"predicted"
}]})
[
'input_data'
],
orient
=
'index'
)
df_predicted_tags
=
pd
.
DataFrame
.
from_dict
(
mongo_conn
.
find_one
({
"$and"
:
[
{
"id"
:
CommonConstants
.
bgrimm_string_level_tags
},
{
"city"
:
city
},
{
"tags_property"
:
CommonConstants
.
tags_property_predicted
}]})[
'input_data'
],
orient
=
'index'
)
df_efficiency_tags
=
pd
.
DataFrame
.
from_dict
(
mongo_conn
.
find_one
({
"$and"
:
[
{
"id"
:
CommonConstants
.
bgrimm_string_level_tags
},
{
"city"
:
city
},
{
"tags_property"
:
CommonConstants
.
tags_property_efficiency
}]})[
'input_data'
],
orient
=
'index'
)
df_raw_tags
.
reset_index
(
inplace
=
True
)
df_raw_tags
.
rename
(
columns
=
{
'index'
:
'tag_name'
},
inplace
=
True
)
df_predicted_tags
.
reset_index
(
inplace
=
True
)
df_predicted_tags
.
rename
(
columns
=
{
'index'
:
'tag_name'
},
inplace
=
True
)
df_efficiency_tags
.
reset_index
(
inplace
=
True
)
df_efficiency_tags
.
rename
(
columns
=
{
'index'
:
'tag_name'
},
inplace
=
True
)
try
:
# df_coefficients = pd.DataFrame.from_dict(
# mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
# {"city": city},
# {"tags_property":
# "mppt_coefficients"}]})
# ['input_data'], orient='index')
df_coefficients
=
pd
.
DataFrame
()
except
Exception
as
er
:
logger
.
exception
(
f
"Coefficient dataframe unavailable with message: {er}"
)
df_coefficients
=
pd
.
DataFrame
()
del
mongo_conn
# df_coefficients = pd.DataFrame.from_dict(mongo_conn.find_one(
# {"$and": [{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
# {"tags_property": CommonConstants.mppt_coefficients}]})['input_data'], orient='index')
df_coefficients
.
reset_index
(
inplace
=
True
)
df_coefficients
.
rename
(
columns
=
{
'index'
:
'inv_id_mppt_id'
},
inplace
=
True
)
#
df_coefficients.reset_index(inplace=True)
# df_coefficients.rename(columns={'index': CommonConstants.inv_id_mppt_id
}, inplace=True)
df_coefficients
=
pd
.
DataFrame
()
tracemalloc
.
clear_traces
()
tracemalloc
.
get_traced_memory
()
del
mongo_conn
final_dict
=
{
"raw"
:
df_raw_tags
.
to_dict
(
'records'
),
"predicted"
:
df_predicted_tags
.
to_dict
(
'records'
),
"coefficients"
:
df_coefficients
.
to_dict
(
'records'
)}
"coefficients"
:
df_coefficients
.
to_dict
(
'records'
),
"efficiency"
:
df_efficiency_tags
.
to_dict
(
'records'
)}
print
(
final_dict
)
return
final_dict
except
Exception
as
e
:
...
...
pipeline.yml
View file @
95c1d2b6
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment