Commit 91322ba4 authored by aakash.bedi's avatar aakash.bedi

updated destructors

parent b16a85d1
Pipeline #59985 failed with stage
...@@ -19,74 +19,99 @@ class AiModelling: ...@@ -19,74 +19,99 @@ class AiModelling:
for inv_id in list(self.df_raw_tags['inv_id'].unique()): for inv_id in list(self.df_raw_tags['inv_id'].unique()):
df = self.df_raw_tags[self.df_raw_tags['inv_id'] == inv_id] df = self.df_raw_tags[self.df_raw_tags['inv_id'] == inv_id]
for mppt_id in list(self.df_raw_tags['mppt_id'].unique()): for mppt_id in list(self.df_raw_tags['mppt_id'].unique()):
print(f'1st memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') print(f'memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect() data_modelling = DataModelling(start_timestamp=self.start_timestamp,
tracemalloc.reset_peak() end_timestamp=self.end_timestamp,
print(f'2nd memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') df_coefficients=self.df_coefficients)
tracemalloc.clear_traces() data_modelling.get_data(inv_id=inv_id, mppt_id=mppt_id, df=df)
print(f'3rd memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') del data_modelling
df_mppt_level = df[df['mppt_id'] == mppt_id] except Exception as e:
df_kairos_data = get_tags_data(df_input_tags=df_mppt_level, start_timestamp=self.start_timestamp, logger.exception(f'Exception - {e}')
end_timestamp=self.end_timestamp, inv_id=inv_id, mppt_id=mppt_id)
def __del__(self):
print(f'4th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') try:
gc.collect() print('destructor called, AiModelling die!')
tracemalloc.reset_peak() except Exception as e:
print(f'5th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') logger.exception(f'Exception - {e}')
tracemalloc.clear_traces()
print(f'6th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
class DataModelling:
logger.info(f'Shape of final df - {df_kairos_data.shape}') def __init__(self, start_timestamp, end_timestamp, df_coefficients):
self.start_timestamp = start_timestamp
mppt_data = GetData() self.end_timestamp = end_timestamp
df_mppt = mppt_data.associate_inv_mppt_id(df=df_kairos_data) self.df_coefficients = df_coefficients
print(f'7th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') def get_data(self, inv_id, mppt_id, df):
gc.collect() try:
tracemalloc.reset_peak() print(f'1st memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
print(f'8th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') gc.collect()
tracemalloc.clear_traces() tracemalloc.reset_peak()
print(f'9th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') print(f'2nd memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
df_coefficient_multiply = mppt_data.multiply_mppt_coefficients(df_mppt=df_mppt, print(f'3rd memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
df_coefficients=self.df_coefficients)
df_mppt_level = df[df['mppt_id'] == mppt_id]
print(f'10th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') df_kairos_data = get_tags_data(df_input_tags=df_mppt_level, start_timestamp=self.start_timestamp,
gc.collect() end_timestamp=self.end_timestamp, inv_id=inv_id, mppt_id=mppt_id)
tracemalloc.reset_peak()
print(f'11th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') print(f'4th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces() gc.collect()
print(f'12th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') tracemalloc.reset_peak()
print(f'5th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
data_preprocessing = DataPreprocessing() tracemalloc.clear_traces()
df_clean = data_preprocessing.remove_outliers(df=df_coefficient_multiply, print(f'6th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
param_list=['tilt_irradiance', 'voltage_mppt',
'current_mppt']) logger.info(f'Shape of final df - {df_kairos_data.shape}')
print(f'13th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect() mppt_data = GetData()
tracemalloc.reset_peak() df_mppt = mppt_data.associate_inv_mppt_id(df=df_kairos_data)
print(f'14th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces() print(f'7th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
print(f'15th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') gc.collect()
tracemalloc.reset_peak()
Training(df=df_clean).data_training(inv_id=inv_id, mppt_id=mppt_id) print(f'8th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
del df_kairos_data print(f'9th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
del df_mppt
del df_coefficient_multiply df_coefficient_multiply = mppt_data.multiply_mppt_coefficients(df_mppt=df_mppt,
df_coefficients=self.df_coefficients)
print(f'16th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect() print(f'10th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.reset_peak() gc.collect()
print(f'17th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') tracemalloc.reset_peak()
tracemalloc.clear_traces() print(f'11th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
print(f'18th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}') tracemalloc.clear_traces()
print(f'12th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
data_preprocessing = DataPreprocessing()
df_clean = data_preprocessing.remove_outliers(df=df_coefficient_multiply,
param_list=['tilt_irradiance', 'voltage_mppt',
'current_mppt'])
print(f'13th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'14th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'15th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
Training(df=df_clean).data_training(inv_id=inv_id, mppt_id=mppt_id)
del df_kairos_data
del df_mppt
del df_coefficient_multiply
print(f'16th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'17th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'18th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
except Exception as e: except Exception as e:
logger.exception(f'Exception - {e}') logger.exception(f'Exception - {e}')
def __del__(self): def __del__(self):
try: try:
print('destructor called, die!') print('destructor called, DataModelling die!')
except Exception as e: except Exception as e:
logger.exception(f'Exception - {e}') logger.exception(f'Exception - {e}')
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment