Commit 525d15c1 authored by dasharatha.vamshi's avatar dasharatha.vamshi

changes

parent 1dcd5d75
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
...@@ -43,7 +43,7 @@ class Welspun_Classifier(ModelWrapper): ...@@ -43,7 +43,7 @@ class Welspun_Classifier(ModelWrapper):
# open-vino # open-vino
self.sink_layer = {'0': 'conv2d_58/BiasAdd/Add', '1': 'conv2d_66/BiasAdd/Add', '2': 'conv2d_74/BiasAdd/Add'} self.sink_layer = {'0': 'conv2d_58/BiasAdd/Add', '1': 'conv2d_66/BiasAdd/Add', '2': 'conv2d_74/BiasAdd/Add'}
self.model_detector_pth = os.path.join(self.base_model_path, "resnet34-wel4.xml") self.model_detector_pth = os.path.join(self.base_model_path, "resnet34-demo.xml")
self.model_bin = os.path.splitext(self.model_detector_pth)[0] + ".bin" self.model_bin = os.path.splitext(self.model_detector_pth)[0] + ".bin"
self.ie = IECore() self.ie = IECore()
self.net1 = self.ie.read_network(model=self.model_detector_pth, weights=self.model_bin) self.net1 = self.ie.read_network(model=self.model_detector_pth, weights=self.model_bin)
...@@ -222,12 +222,13 @@ class Welspun_Classifier(ModelWrapper): ...@@ -222,12 +222,13 @@ class Welspun_Classifier(ModelWrapper):
x.append(prob[1]) x.append(prob[1])
x.append(prob[2]) x.append(prob[2])
x.append(prob[3]) x.append(prob[3])
x.append(prob[4])
a = x.index(max(x)) a = x.index(max(x))
# print(type(prob)) # print(type(prob))
# if self.counter%1 == 0: # if self.counter%1 == 0:
self.counter = self.counter + 1 self.counter = self.counter + 1
if a == 0 and x[0] > 0.95: if a == 1 and x[1] > 0.95:
if self.defect_type == 'Mix': if self.defect_type == 'Mix':
cv2.putText(frame, text="Mix Color Defect Detected", org=(50, 50), cv2.putText(frame, text="Mix Color Defect Detected", org=(50, 50),
color=(0, 0, 255), color=(0, 0, 255),
...@@ -251,7 +252,7 @@ class Welspun_Classifier(ModelWrapper): ...@@ -251,7 +252,7 @@ class Welspun_Classifier(ModelWrapper):
# "sound_1") # "sound_1")
# logger.info(f"Probability: {prob}") # logger.info(f"Probability: {prob}")
# self.counter = 0 # self.counter = 0
elif a == 2 and x[2] > 0.95: elif a == 3 and x[3] > 0.95:
if self.defect_type == 'Short': if self.defect_type == 'Short':
cv2.putText(frame, text="Short Defect Detected", org=(50, 50), cv2.putText(frame, text="Short Defect Detected", org=(50, 50),
color=(0, 0, 255), color=(0, 0, 255),
...@@ -275,7 +276,7 @@ class Welspun_Classifier(ModelWrapper): ...@@ -275,7 +276,7 @@ class Welspun_Classifier(ModelWrapper):
# "sound_1") # "sound_1")
# logger.info(f"Probability: {prob}") # logger.info(f"Probability: {prob}")
# self.counter = 0 # self.counter = 0
elif a == 3 and x[3] > 0.95: elif a == 4 and x[4] > 0.95:
if self.defect_type == 'Split': if self.defect_type == 'Split':
cv2.putText(frame, text="Split Defect Detected", org=(50, 50), cv2.putText(frame, text="Split Defect Detected", org=(50, 50),
color=(0, 0, 255), color=(0, 0, 255),
...@@ -297,6 +298,28 @@ class Welspun_Classifier(ModelWrapper): ...@@ -297,6 +298,28 @@ class Welspun_Classifier(ModelWrapper):
# "sound_1") # "sound_1")
# logger.info(f"Probability: {prob}") # logger.info(f"Probability: {prob}")
# self.counter = 0 # self.counter = 0
elif a == 0 and x[0] > 0.95:
if self.defect_type == 'good':
cv2.putText(frame, text="No Defect", org=(50, 50),
color=(0, 0, 255),
thickness=2,
fontScale=1, fontFace=cv2.LINE_AA)
# pass
else:
self.defect_type = 'good'
resized_frame = cv2.resize(frame, (64, 64))
cv2.putText(frame, text="No Defect", org=(50, 50),
color=(0, 0, 255),
thickness=2,
fontScale=1, fontFace=cv2.LINE_AA)
self.send_payload("No Defect", resized_frame, "no defect " + str(prob[3]), "#472020", "#ed2020",
"sound_1")
logger.info(f"Probability: {prob}")
# if self.counter % 25 == 0:
# self.send_payload("Split Defect Detected", resized_frame, "Split " + str(prob[3]), "#472020", "#ed2020",
# "sound_1")
# logger.info(f"Probability: {prob}")
# self.counter = 0
elif a == 2: elif a == 2:
pass pass
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment