Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
W
Welspun-Classification
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
CI / CD Analytics
Repository Analytics
Value Stream Analytics
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
dasharatha.vamshi
Welspun-Classification
Commits
1dcd5d75
Commit
1dcd5d75
authored
Feb 15, 2021
by
dasharatha.vamshi
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
changes
parent
a1998435
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
28 additions
and
45 deletions
+28
-45
scripts/datasets/check1.avi
scripts/datasets/check1.avi
+0
-0
scripts/welspun_classifier.py
scripts/welspun_classifier.py
+28
-45
No files found.
scripts/datasets/check1.avi
0 → 100644
View file @
1dcd5d75
File added
scripts/welspun_classifier.py
View file @
1dcd5d75
...
@@ -190,7 +190,8 @@ class Welspun_Classifier(ModelWrapper):
...
@@ -190,7 +190,8 @@ class Welspun_Classifier(ModelWrapper):
def
process_frame
(
self
,
frame
):
def
process_frame
(
self
,
frame
):
starttime
=
time
.
time
()
starttime
=
time
.
time
()
vino_frame
=
frame
.
copy
()
vino_frame
=
frame
.
copy
()
vino_frame
=
vino_frame
[
20
:
600
,
150
:
650
]
# vino_frame = vino_frame[20:600,150:650]
vino_frame
=
vino_frame
[
5
:
600
,
70
:
650
]
images
=
np
.
ndarray
(
shape
=
(
self
.
n
,
self
.
c
,
self
.
h
,
self
.
w
))
images
=
np
.
ndarray
(
shape
=
(
self
.
n
,
self
.
c
,
self
.
h
,
self
.
w
))
images_hw
=
[]
images_hw
=
[]
for
i
in
range
(
self
.
n
):
for
i
in
range
(
self
.
n
):
...
@@ -234,17 +235,6 @@ class Welspun_Classifier(ModelWrapper):
...
@@ -234,17 +235,6 @@ class Welspun_Classifier(ModelWrapper):
fontScale
=
1
,
fontFace
=
cv2
.
LINE_AA
)
fontScale
=
1
,
fontFace
=
cv2
.
LINE_AA
)
# pass
# pass
else
:
else
:
# self.defect_type = 'Mix'
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
# cv2.putText(frame, text="Mix Color Defect Detected", org=(50, 50),
# color=(0, 0, 255),
# thickness=2,
# fontScale=1, fontFace=cv2.LINE_AA)
# self.send_payload("Mix Color Detected", resized_frame, "Mix Color " + str(prob[0]), "#472020",
# "#ed2020",
# "sound_1")
# logger.info(f"Probability: {prob}")
if
self
.
counter
%
25
==
0
:
self
.
defect_type
=
'Mix'
self
.
defect_type
=
'Mix'
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
cv2
.
putText
(
frame
,
text
=
"Mix Color Defect Detected"
,
org
=
(
50
,
50
),
cv2
.
putText
(
frame
,
text
=
"Mix Color Defect Detected"
,
org
=
(
50
,
50
),
...
@@ -255,7 +245,12 @@ class Welspun_Classifier(ModelWrapper):
...
@@ -255,7 +245,12 @@ class Welspun_Classifier(ModelWrapper):
"#ed2020"
,
"#ed2020"
,
"sound_1"
)
"sound_1"
)
logger
.
info
(
f
"Probability: {prob}"
)
logger
.
info
(
f
"Probability: {prob}"
)
self
.
counter
=
0
# if self.counter % 25 == 0:
# self.send_payload("Mix Color Detected", resized_frame, "Mix Color " + str(prob[0]), "#472020",
# "#ed2020",
# "sound_1")
# logger.info(f"Probability: {prob}")
# self.counter = 0
elif
a
==
2
and
x
[
2
]
>
0.95
:
elif
a
==
2
and
x
[
2
]
>
0.95
:
if
self
.
defect_type
==
'Short'
:
if
self
.
defect_type
==
'Short'
:
cv2
.
putText
(
frame
,
text
=
"Short Defect Detected"
,
org
=
(
50
,
50
),
cv2
.
putText
(
frame
,
text
=
"Short Defect Detected"
,
org
=
(
50
,
50
),
...
@@ -264,17 +259,6 @@ class Welspun_Classifier(ModelWrapper):
...
@@ -264,17 +259,6 @@ class Welspun_Classifier(ModelWrapper):
fontScale
=
1
,
fontFace
=
cv2
.
LINE_AA
)
fontScale
=
1
,
fontFace
=
cv2
.
LINE_AA
)
# pass
# pass
else
:
else
:
# self.defect_type = 'Short'
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
# cv2.putText(frame, text="Short Defect Detected", org=(50, 50),
# color=(0, 0, 255),
# thickness=2,
# fontScale=1, fontFace=cv2.LINE_AA)
# self.send_payload("Short Tile Detected", resized_frame, "Short Tile " + str(prob[2]), "#472020",
# "#ed2020",
# "sound_1")
# logger.info(f"Probability: {prob}")
if
self
.
counter
%
25
==
0
:
self
.
defect_type
=
'Short'
self
.
defect_type
=
'Short'
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
cv2
.
putText
(
frame
,
text
=
"Short Defect Detected"
,
org
=
(
50
,
50
),
cv2
.
putText
(
frame
,
text
=
"Short Defect Detected"
,
org
=
(
50
,
50
),
...
@@ -285,7 +269,12 @@ class Welspun_Classifier(ModelWrapper):
...
@@ -285,7 +269,12 @@ class Welspun_Classifier(ModelWrapper):
"#ed2020"
,
"#ed2020"
,
"sound_1"
)
"sound_1"
)
logger
.
info
(
f
"Probability: {prob}"
)
logger
.
info
(
f
"Probability: {prob}"
)
self
.
counter
=
0
# if self.counter % 25 == 0:
# self.send_payload("Short Tile Detected", resized_frame, "Short Tile " + str(prob[2]), "#472020",
# "#ed2020",
# "sound_1")
# logger.info(f"Probability: {prob}")
# self.counter = 0
elif
a
==
3
and
x
[
3
]
>
0.95
:
elif
a
==
3
and
x
[
3
]
>
0.95
:
if
self
.
defect_type
==
'Split'
:
if
self
.
defect_type
==
'Split'
:
cv2
.
putText
(
frame
,
text
=
"Split Defect Detected"
,
org
=
(
50
,
50
),
cv2
.
putText
(
frame
,
text
=
"Split Defect Detected"
,
org
=
(
50
,
50
),
...
@@ -294,16 +283,6 @@ class Welspun_Classifier(ModelWrapper):
...
@@ -294,16 +283,6 @@ class Welspun_Classifier(ModelWrapper):
fontScale
=
1
,
fontFace
=
cv2
.
LINE_AA
)
fontScale
=
1
,
fontFace
=
cv2
.
LINE_AA
)
# pass
# pass
else
:
else
:
# self.defect_type = 'Split'
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
# cv2.putText(frame, text="Split Defect Detected", org=(50, 50),
# color=(0, 0, 255),
# thickness=2,
# fontScale=1, fontFace=cv2.LINE_AA)
# self.send_payload("Split Defect Detected", resized_frame, "Split " + str(prob[3]), "#472020", "#ed2020",
# "sound_1")
# logger.info(f"Probability: {prob}")
if
self
.
counter
%
25
==
0
:
self
.
defect_type
=
'Split'
self
.
defect_type
=
'Split'
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
resized_frame
=
cv2
.
resize
(
frame
,
(
64
,
64
))
cv2
.
putText
(
frame
,
text
=
"Split Defect Detected"
,
org
=
(
50
,
50
),
cv2
.
putText
(
frame
,
text
=
"Split Defect Detected"
,
org
=
(
50
,
50
),
...
@@ -313,7 +292,11 @@ class Welspun_Classifier(ModelWrapper):
...
@@ -313,7 +292,11 @@ class Welspun_Classifier(ModelWrapper):
self
.
send_payload
(
"Split Defect Detected"
,
resized_frame
,
"Split "
+
str
(
prob
[
3
]),
"#472020"
,
"#ed2020"
,
self
.
send_payload
(
"Split Defect Detected"
,
resized_frame
,
"Split "
+
str
(
prob
[
3
]),
"#472020"
,
"#ed2020"
,
"sound_1"
)
"sound_1"
)
logger
.
info
(
f
"Probability: {prob}"
)
logger
.
info
(
f
"Probability: {prob}"
)
self
.
counter
=
0
# if self.counter % 25 == 0:
# self.send_payload("Split Defect Detected", resized_frame, "Split " + str(prob[3]), "#472020", "#ed2020",
# "sound_1")
# logger.info(f"Probability: {prob}")
# self.counter = 0
elif
a
==
2
:
elif
a
==
2
:
pass
pass
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment