Commit 88724804 authored by dasharatha.vamshi's avatar dasharatha.vamshi

added one main

parent 5d708a91
import sys
import warnings
import mlflow
from sklearn import metrics
from sklearn.model_selection import train_test_split
import math
import traceback
from datetime import datetime
# from scripts.constants.constants import RawConstants
# from scripts.core.model_loader import ModelLoader
# from scripts.section_utils.bof_section import preprocess_bof_section
# from scripts.section_utils.extruder_section import preprocess_extruder_section
# from scripts.section_utils.material_section import preprocess_viscosity_section
# from scripts.section_utils.mixer_section import preprocess_mixer_section
# from scripts.section_utils.pickup_section import preprocess_pickup_section
# from scripts.section_utils.sheet_supply_section import preprocess_sheet_section
warnings.filterwarnings("ignore")
import warnings
# from scripts.constants.constants import ExtruderConstants
warnings.filterwarnings("ignore")
import warnings
# from scripts.constants.constants import ViscosityConstants
warnings.filterwarnings("ignore")
import warnings
# from scripts.constants.constants import MixerConstants
warnings.filterwarnings("ignore")
import warnings
# from scripts.constants.constants import PickupConstants
warnings.filterwarnings("ignore")
import warnings
# from scripts.constants.constants import SheetConstants
import numpy as np
import pandas as pd
from loguru import logger
warnings.filterwarnings("ignore")
def preprocess_sheet_section(df, index_number):
sheet_supply_column = SheetConstants.sheet_supply_column
sheet_supply_df = df[sheet_supply_column]
......@@ -724,6 +690,8 @@ def preprocess_viscosity_section(viscosity_df, index_number):
viscosity_df['batch-date'] = 'Batch_' + viscosity_df['Batch No.'].astype(str) + '_' + viscosity_df['date'].astype(
str)
viscosity_df = viscosity_df[viscosity_df['Index No'] == index_number]
if viscosity_df.empty:
raise Exception(f"Size Index No {index_number} not found pls check the file")
rubber_cols = ViscosityConstants.rubber_cols
# Replace '-' with 0 for numerical and float columns
viscosity_df[rubber_cols] = viscosity_df[rubber_cols].replace('-', 0)
......@@ -1057,58 +1025,6 @@ def preprocess_extruder_section(df, index_number, vis_df):
return df_extruder_grouped
import math
import warnings
import traceback
from datetime import datetime
import numpy as np
import pandas as pd
from loguru import logger
from scripts.constants.constants import BofConstants
warnings.filterwarnings("ignore")
def mixer_section_start_end_time(raw_df, index_no):
try:
mixer_cols = BofConstants.bof_mixer_cols
mixer_df = raw_df[mixer_cols]
mixer_df['Time Stamp'] = pd.to_datetime(mixer_df['Time Stamp'])
mixer_df = mixer_df.sort_values(by='Time Stamp')
numeric_cols = mixer_df.select_dtypes(include=['int', 'float']).columns
# Convert numeric columns to float
mixer_df[numeric_cols] = mixer_df[numeric_cols].astype(float)
mixer_df['day'] = mixer_df['Time Stamp'].dt.date
mixer_df = mixer_df[mixer_df["Size No (INDEX No).3"] == index_no]
mixer_df = mixer_df[mixer_df["Mixing batch number"] != 0]
mixer_df['time_min'] = mixer_df['Time Stamp']
mixer_df['time_max'] = mixer_df['Time Stamp']
aggregation_dict = {
'time_min': 'min',
'time_max': 'max',
}
group_by = ['day', 'Mixing batch number']
df_mixer_grouped = mixer_df.groupby(group_by).agg(aggregation_dict).reset_index()
df_mixer_grouped['mixer_section_time_diff_second'] = df_mixer_grouped['time_max'] - df_mixer_grouped['time_min']
df_mixer_grouped['mixer_section_time_diff_second'] = df_mixer_grouped[
'mixer_section_time_diff_second'].dt.total_seconds()
df_mixer_grouped['batch-date'] = 'Batch_' + df_mixer_grouped['Mixing batch number'].astype(str) + '_' + \
df_mixer_grouped['day'].astype(str)
date_dict = {}
batch_lis = list(df_mixer_grouped['batch-date'].unique())
for each_bt in batch_lis:
df_nw = df_mixer_grouped[df_mixer_grouped['batch-date'] == each_bt]
date_dict[each_bt] = {"start_time": str(list(df_nw['time_min'])[0]),
'end_time': str(list(df_nw['time_max'])[0])}
return date_dict
except Exception as err:
logger.error(f'Error in fetching mixer batch date dictionary: {str(err)}')
logger.error(traceback.format_exc())
raise Exception(str(err))
def return_batch_no_df(raw_df, viscosity_df, date_dict, index_number):
try:
......@@ -1988,8 +1904,8 @@ def start_prediction(raw_path, viscosity_path, index_no, raw_skip_rows, viscosit
df_grouped = merged_all_sections(df_sheet_grouped, df_mixer_grouped, df_extruder_grouped, df_bof_grouped,
df_pickup_grouped, viscosity_df)
load_and_predict(df_grouped, index_no, model_path)
# model_trainer(df_grouped, index_no, model_path)
# load_and_predict(df_grouped, index_no, model_path)
model_trainer(df_grouped, index_no, model_path)
if __name__ == "__main__":
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment