Commit 1057b00c authored by dasharatha.vamshi's avatar dasharatha.vamshi

updated the fy676a model

parent e725f40a
...@@ -21,14 +21,16 @@ warnings.filterwarnings("ignore") ...@@ -21,14 +21,16 @@ warnings.filterwarnings("ignore")
def model_trainer(df_grouped, index_no): def model_trainer(df_grouped, index_no):
cols_x, cols_y, saved_model = None, None, None cols_x, cols_y, saved_model = None, None, None
if index_no == 1250: if index_no == 1250:
cols_x = ['temperature_ws_side_std', 'calender_roll_upper_side_inlet_side_cooling_water_temperature_mean', cols_x = ['temperature_ws_side_std', '_calendar_current_mean', 'Weighted_NITROGEN_type', 'ram_pressure_mean',
'_calendar_current_mean', 'electric_energy_mean', 'seat_temperature_immediately_after_bof_mean', 'electric_energy_mean', 'screw_operation_side_outlet_side_cooling_water_flow_rate_std',
'Weighted_NITROGEN_type', 'ram_pressure_mean', 'surface_temperature_center_std', 'calender_roll_upper_side_inlet_side_cooling_water_temperature_mean', 'Weighted_VM_type',
'drilled_side_left_exit_side_cooling_water_temperature_mean', 'Weighted_VM_type', 'seat_temperature_immediately_after_bof_mean', 'Weighted_DIRT_type', 'surface_temperature_center_std',
'screw_operation_side_outlet_side_cooling_water_flow_rate_std', 'Weighted_DIRT_type', 'residence_time_max', 'drilled_side_left_exit_side_cooling_water_temperature_mean',
'screw_opposite_operation_side_outlet_side_cooling_water_temperature_std', 'residence_time_max', 'Weighted_PRI_type', 'calender_roll_lower_side_inlet_side_cooling_water_flow_rate_mean',
'calender_roll_lower_side_inlet_side_cooling_water_flow_rate_mean', 'Weighted_ASH_type', 'screw_opposite_operation_side_outlet_side_cooling_water_temperature_std', 'Weighted_ASH_type',
'Weighted_PO_type', 'drilled_side_right_exit_side_cooling_water_flow_rate_std'] 'Weighted_PO_type', 'mixer_rotor_right_inlet_side_cooling_water_flow_rate_mean',
'drilled_side_right_exit_side_cooling_water_flow_rate_std',
'Weighted_Humidity during transportation__type[%]']
cols_y = "viscosity" cols_y = "viscosity"
saved_model = ModelLoader({ saved_model = ModelLoader({
"type": "mlflow.sklearn", "type": "mlflow.sklearn",
...@@ -116,6 +118,7 @@ def merged_all_sections(sheet_df, mixer_df, extruder_df, bof_df, pickup_df, visc ...@@ -116,6 +118,7 @@ def merged_all_sections(sheet_df, mixer_df, extruder_df, bof_df, pickup_df, visc
merged_df = pd.merge(merged_df, pickup_df, on='batch-date', how='left') merged_df = pd.merge(merged_df, pickup_df, on='batch-date', how='left')
df_grouped = pd.merge(merged_df, viscosity_df, on='batch-date', how='left') df_grouped = pd.merge(merged_df, viscosity_df, on='batch-date', how='left')
selected_cols = df_grouped.columns selected_cols = df_grouped.columns
df_grouped = df_grouped[df_grouped['status'] == True]
df_grouped = df_grouped[selected_cols] df_grouped = df_grouped[selected_cols]
viscosity_rubber_cols = ['Weight_type1', 'Weight_type2', viscosity_rubber_cols = ['Weight_type1', 'Weight_type2',
...@@ -150,14 +153,16 @@ def load_and_predict(df_grouped, index_no): ...@@ -150,14 +153,16 @@ def load_and_predict(df_grouped, index_no):
"type": "mlflow.sklearn", "type": "mlflow.sklearn",
"path": "models/fy676a" "path": "models/fy676a"
}).load_model() }).load_model()
cols_x = ['temperature_ws_side_std', 'calender_roll_upper_side_inlet_side_cooling_water_temperature_mean', cols_x = ['temperature_ws_side_std', '_calendar_current_mean', 'Weighted_NITROGEN_type', 'ram_pressure_mean',
'_calendar_current_mean', 'electric_energy_mean', 'seat_temperature_immediately_after_bof_mean', 'electric_energy_mean', 'screw_operation_side_outlet_side_cooling_water_flow_rate_std',
'Weighted_NITROGEN_type', 'ram_pressure_mean', 'surface_temperature_center_std', 'calender_roll_upper_side_inlet_side_cooling_water_temperature_mean', 'Weighted_VM_type',
'drilled_side_left_exit_side_cooling_water_temperature_mean', 'Weighted_VM_type', 'seat_temperature_immediately_after_bof_mean', 'Weighted_DIRT_type', 'surface_temperature_center_std',
'screw_operation_side_outlet_side_cooling_water_flow_rate_std', 'Weighted_DIRT_type', 'residence_time_max', 'drilled_side_left_exit_side_cooling_water_temperature_mean',
'screw_opposite_operation_side_outlet_side_cooling_water_temperature_std', 'residence_time_max', 'Weighted_PRI_type', 'calender_roll_lower_side_inlet_side_cooling_water_flow_rate_mean',
'calender_roll_lower_side_inlet_side_cooling_water_flow_rate_mean', 'Weighted_ASH_type', 'screw_opposite_operation_side_outlet_side_cooling_water_temperature_std', 'Weighted_ASH_type',
'Weighted_PO_type', 'drilled_side_right_exit_side_cooling_water_flow_rate_std'] 'Weighted_PO_type', 'mixer_rotor_right_inlet_side_cooling_water_flow_rate_mean',
'drilled_side_right_exit_side_cooling_water_flow_rate_std',
'Weighted_Humidity during transportation__type[%]']
cols_y = "viscosity" cols_y = "viscosity"
features = df_grouped[cols_x] features = df_grouped[cols_x]
labels = df_grouped[cols_y] labels = df_grouped[cols_y]
...@@ -242,8 +247,8 @@ def start_prediction(raw_path, viscosity_path, index_no, raw_skip_rows, viscosit ...@@ -242,8 +247,8 @@ def start_prediction(raw_path, viscosity_path, index_no, raw_skip_rows, viscosit
df_grouped = merged_all_sections(df_sheet_grouped, df_mixer_grouped, df_extruder_grouped, df_bof_grouped, df_grouped = merged_all_sections(df_sheet_grouped, df_mixer_grouped, df_extruder_grouped, df_bof_grouped,
df_pickup_grouped, viscosity_df) df_pickup_grouped, viscosity_df)
load_and_predict(df_grouped, index_no) # load_and_predict(df_grouped, index_no)
# model_trainer(df_grouped, index_no) model_trainer(df_grouped, index_no)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -8,4 +8,4 @@ flavors: ...@@ -8,4 +8,4 @@ flavors:
pickled_model: model.pkl pickled_model: model.pkl
serialization_format: cloudpickle serialization_format: cloudpickle
sklearn_version: 1.2.2 sklearn_version: 1.2.2
utc_time_created: '2023-12-20 06:24:57.321465' utc_time_created: '2023-12-21 10:42:57.059987'
No preview for this file type
...@@ -191,7 +191,7 @@ class ViscosityConstants: ...@@ -191,7 +191,7 @@ class ViscosityConstants:
'Weighted_DIRT_type', 'Weighted_ASH_type', 'Weighted_VM_type', 'Weighted_DIRT_type', 'Weighted_ASH_type', 'Weighted_VM_type',
'Weighted_PRI_type', 'Weighted_NITROGEN_type', 'Weighted_PRI_type', 'Weighted_NITROGEN_type',
'Weighted_Temperature during transportation_type[℃]', 'Weighted_Temperature during transportation_type[℃]',
'Weighted_Humidity during transportation__type[%]', 'Weighted Sum', 'viscosity'] 'Weighted_Humidity during transportation__type[%]', 'Weighted Sum', 'viscosity','status']
class SheetConstants: class SheetConstants:
......
...@@ -6,6 +6,21 @@ from scripts.constants.constants import ViscosityConstants ...@@ -6,6 +6,21 @@ from scripts.constants.constants import ViscosityConstants
warnings.filterwarnings("ignore") warnings.filterwarnings("ignore")
def create_status_column(df, type_col_name, columns_list):
status_col = []
for i, val in enumerate(df[type_col_name]):
if val == 0:
status_col.append(False)
else:
if any(df[column].iloc[i] == 0 for column in columns_list):
status_col.append(False)
else:
status_col.append(True)
return status_col
def preprocess_viscosity_section(viscosity_df, index_number): def preprocess_viscosity_section(viscosity_df, index_number):
# adding date col to the viscosity df # adding date col to the viscosity df
viscosity_df = viscosity_df.sort_values(by='Mixing date') viscosity_df = viscosity_df.sort_values(by='Mixing date')
...@@ -68,6 +83,27 @@ def preprocess_viscosity_section(viscosity_df, index_number): ...@@ -68,6 +83,27 @@ def preprocess_viscosity_section(viscosity_df, index_number):
viscosity_df = viscosity_df[new_order] viscosity_df = viscosity_df[new_order]
viscosity_df['batch-date'] = 'Batch_' + viscosity_df['Batch No.'].astype(str) + '_' + viscosity_df['date'].astype( viscosity_df['batch-date'] = 'Batch_' + viscosity_df['Batch No.'].astype(str) + '_' + viscosity_df['date'].astype(
str) str)
# Added Status to check rubber
# Rubber Type 1
rubber_1_cols = [
'DIRT_type1',
'ASH_type1',
'VM_type1',
'PRI_type1',
'NITROGEN_type1'
]
# Rubber Type 2
rubber_2_cols = [
'PO_type2',
'DIRT_type1',
'ASH_type2',
'VM_type2',
'PRI_type2',
'NITROGEN_type2'
]
viscosity_df['rubber_status_1'] = create_status_column(viscosity_df, 'Weight_type1', rubber_1_cols)
viscosity_df['rubber_status_2'] = create_status_column(viscosity_df, 'Weight_type2', rubber_2_cols)
viscosity_df['status'] = viscosity_df['rubber_status_1'] | viscosity_df['rubber_status_2']
req_cols = ViscosityConstants.req_cols req_cols = ViscosityConstants.req_cols
final_viscosity_df = viscosity_df[req_cols] final_viscosity_df = viscosity_df[req_cols]
final_viscosity_df = round(final_viscosity_df, 6) final_viscosity_df = round(final_viscosity_df, 6)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment