Commit 95c1d2b6 authored by dasharatha.vamshi's avatar dasharatha.vamshi

added get tags

parent b34dc33e
......@@ -30,14 +30,28 @@ implementation:
city = os.getenv("CITY")
db_ = os.getenv("MONGO_DB")
print(pipeline_param)
print("--",pipeline_param["MONGO_URI"])
print("--", pipeline_param["MONGO_URI"])
# collections
collection_ = os.getenv("MONGO_COLLECTION")
mongo_uri_ = pipeline_param['MONGO_URI']
print("mongo_uri",mongo_uri_)
print("mongo_uri", mongo_uri_)
project_id_ = pipeline_param['PROJECT_ID']
query_filter_ = pipeline_param['QUERY_FILTER']
try:
class CommonConstants:
bgrimm_string_level_tags = 'bgrimm_string_level_tags'
panel_id = 'panel_id'
sub_id = 'sub_id'
inv_id_mppt_id = 'inv_id_mppt_id'
tags_property_raw = 'raw'
tags_property_predicted = 'predicted'
tags_property_efficiency = 'efficiency'
bgrim_tags_property_efficiency = 'Efficiency'
tags_property_efficiency_inv = 'efficiency'
tags_property_efficiency_plant = 'efficiency_plant'
mppt_coefficients = 'mppt_coefficients'
class MongoConstants:
# DB
db = db_
......@@ -92,49 +106,47 @@ implementation:
except Exception as e:
logger.exception(f'Exception - {e}')
tracemalloc.clear_traces()
mongo_conn = MongoConnect(uri=Mongo.mongo_uri, database=MongoConstants.db,
collection=MongoConstants.collection)
if mongo_conn is None:
logger.info(f'mongodb is not connected, please check')
else:
logger.info(f'mongodb is connected, mongo conn - {mongo_conn}')
tracemalloc.clear_traces()
logger.info(f'mongo conn - {mongo_conn}')
df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_raw}]})['input_data'], orient='index')
df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
{"city": city},
{"tags_property": "raw"}]})
['input_data'], orient='index')
df_predicted_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_predicted}]})['input_data'], orient='index')
df_predicted_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
{"city": city},
{"tags_property": "predicted"}]})
['input_data'], orient='index')
df_efficiency_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_efficiency}]})['input_data'], orient='index')
df_raw_tags.reset_index(inplace=True)
df_raw_tags.rename(columns={'index': 'tag_name'}, inplace=True)
df_predicted_tags.reset_index(inplace=True)
df_predicted_tags.rename(columns={'index': 'tag_name'}, inplace=True)
df_efficiency_tags.reset_index(inplace=True)
df_efficiency_tags.rename(columns={'index': 'tag_name'}, inplace=True)
try:
# df_coefficients = pd.DataFrame.from_dict(
# mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
# {"city": city},
# {"tags_property":
# "mppt_coefficients"}]})
# ['input_data'], orient='index')
df_coefficients = pd.DataFrame()
except Exception as er:
logger.exception(f"Coefficient dataframe unavailable with message: {er}")
df_coefficients = pd.DataFrame()
del mongo_conn
# df_coefficients = pd.DataFrame.from_dict(mongo_conn.find_one(
# {"$and": [{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
# {"tags_property": CommonConstants.mppt_coefficients}]})['input_data'], orient='index')
df_coefficients.reset_index(inplace=True)
df_coefficients.rename(columns={'index': 'inv_id_mppt_id'}, inplace=True)
# df_coefficients.reset_index(inplace=True)
# df_coefficients.rename(columns={'index': CommonConstants.inv_id_mppt_id}, inplace=True)
df_coefficients = pd.DataFrame()
tracemalloc.clear_traces()
tracemalloc.get_traced_memory()
del mongo_conn
final_dict = {"raw": df_raw_tags.to_dict('records'), "predicted": df_predicted_tags.to_dict('records'),
"coefficients": df_coefficients.to_dict('records')}
"coefficients": df_coefficients.to_dict('records'),
"efficiency": df_efficiency_tags.to_dict('records')}
print(final_dict)
return final_dict
except Exception as e:
......
def get_tags_function(pipeline_param: dict) -> dict:
import pandas as pd
from loguru import logger
......@@ -9,14 +8,28 @@ def get_tags_function(pipeline_param: dict) -> dict:
city = os.getenv("CITY")
db_ = os.getenv("MONGO_DB")
print(pipeline_param)
print("--",pipeline_param["MONGO_URI"])
print("--", pipeline_param["MONGO_URI"])
# collections
collection_ = os.getenv("MONGO_COLLECTION")
mongo_uri_ = pipeline_param['MONGO_URI']
print("mongo_uri",mongo_uri_)
print("mongo_uri", mongo_uri_)
project_id_ = pipeline_param['PROJECT_ID']
query_filter_ = pipeline_param['QUERY_FILTER']
try:
class CommonConstants:
bgrimm_string_level_tags = 'bgrimm_string_level_tags'
panel_id = 'panel_id'
sub_id = 'sub_id'
inv_id_mppt_id = 'inv_id_mppt_id'
tags_property_raw = 'raw'
tags_property_predicted = 'predicted'
tags_property_efficiency = 'efficiency'
bgrim_tags_property_efficiency = 'Efficiency'
tags_property_efficiency_inv = 'efficiency'
tags_property_efficiency_plant = 'efficiency_plant'
mppt_coefficients = 'mppt_coefficients'
class MongoConstants:
# DB
db = db_
......@@ -71,49 +84,47 @@ def get_tags_function(pipeline_param: dict) -> dict:
except Exception as e:
logger.exception(f'Exception - {e}')
tracemalloc.clear_traces()
mongo_conn = MongoConnect(uri=Mongo.mongo_uri, database=MongoConstants.db,
collection=MongoConstants.collection)
if mongo_conn is None:
logger.info(f'mongodb is not connected, please check')
else:
logger.info(f'mongodb is connected, mongo conn - {mongo_conn}')
tracemalloc.clear_traces()
logger.info(f'mongo conn - {mongo_conn}')
df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_raw}]})['input_data'], orient='index')
df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
{"city": city},
{"tags_property": "raw"}]})
['input_data'], orient='index')
df_predicted_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_predicted}]})['input_data'], orient='index')
df_predicted_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
{"city": city},
{"tags_property": "predicted"}]})
['input_data'], orient='index')
df_efficiency_tags = pd.DataFrame.from_dict(mongo_conn.find_one({"$and": [
{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
{"tags_property": CommonConstants.tags_property_efficiency}]})['input_data'], orient='index')
df_raw_tags.reset_index(inplace=True)
df_raw_tags.rename(columns={'index': 'tag_name'}, inplace=True)
df_predicted_tags.reset_index(inplace=True)
df_predicted_tags.rename(columns={'index': 'tag_name'}, inplace=True)
df_efficiency_tags.reset_index(inplace=True)
df_efficiency_tags.rename(columns={'index': 'tag_name'}, inplace=True)
try:
# df_coefficients = pd.DataFrame.from_dict(
# mongo_conn.find_one({"$and": [{"id": "bgrimm_string_level_tags"},
# {"city": city},
# {"tags_property":
# "mppt_coefficients"}]})
# ['input_data'], orient='index')
df_coefficients = pd.DataFrame()
except Exception as er:
logger.exception(f"Coefficient dataframe unavailable with message: {er}")
df_coefficients = pd.DataFrame()
del mongo_conn
# df_coefficients = pd.DataFrame.from_dict(mongo_conn.find_one(
# {"$and": [{"id": CommonConstants.bgrimm_string_level_tags}, {"city": city},
# {"tags_property": CommonConstants.mppt_coefficients}]})['input_data'], orient='index')
df_coefficients.reset_index(inplace=True)
df_coefficients.rename(columns={'index': 'inv_id_mppt_id'}, inplace=True)
# df_coefficients.reset_index(inplace=True)
# df_coefficients.rename(columns={'index': CommonConstants.inv_id_mppt_id}, inplace=True)
df_coefficients = pd.DataFrame()
tracemalloc.clear_traces()
tracemalloc.get_traced_memory()
del mongo_conn
final_dict = {"raw": df_raw_tags.to_dict('records'), "predicted": df_predicted_tags.to_dict('records'),
"coefficients": df_coefficients.to_dict('records')}
"coefficients": df_coefficients.to_dict('records'),
"efficiency": df_efficiency_tags.to_dict('records')}
print(final_dict)
return final_dict
except Exception as e:
......
......@@ -3,7 +3,7 @@ kind: Workflow
metadata:
annotations:
pipelines.kubeflow.org/kfp_sdk_version: 1.8.18
pipelines.kubeflow.org/pipeline_compilation_time: '2023-09-18T15:19:35.000810'
pipelines.kubeflow.org/pipeline_compilation_time: '2023-09-18T18:30:46.812596'
pipelines.kubeflow.org/pipeline_spec: '{"description": "All Components", "inputs":
[{"description": "", "name": "pipeline_param", "type": "JsonObject"}, {"description":
"", "name": "plant_info", "type": "JsonObject"}], "name": "Dalmia"}'
......@@ -56,29 +56,36 @@ spec:
\ loguru import logger\n import warnings\n import tracemalloc\n import\
\ os\n from pymongo import MongoClient\n city = os.getenv(\"CITY\")\n\
\ db_ = os.getenv(\"MONGO_DB\")\n print(pipeline_param)\n print(\"\
--\",pipeline_param[\"MONGO_URI\"])\n # collections\n collection_ =\
--\", pipeline_param[\"MONGO_URI\"])\n # collections\n collection_ =\
\ os.getenv(\"MONGO_COLLECTION\")\n mongo_uri_ = pipeline_param['MONGO_URI']\n\
\ print(\"mongo_uri\",mongo_uri_)\n project_id_ = pipeline_param['PROJECT_ID']\n\
\ query_filter_ = pipeline_param['QUERY_FILTER']\n try:\n class\
\ MongoConstants:\n # DB\n db = db_\n # collections\n\
\ collection = collection_\n\n class Mongo:\n \
\ mongo_uri = mongo_uri_\n project_id = project_id_\n \
\ query_filter = query_filter_\n\n class MongoConnect:\n \
\ def __init__(self, uri, database, collection):\n try:\n\
\ self.uri = uri\n self.client = MongoClient(self.uri,\
\ connect=False)\n self.database = database\n \
\ self.collection = collection\n except Exception\
\ as e:\n logger.exception(f'Exception - {e}')\n\n \
\ @staticmethod\n def data_dict(data, city):\n \
\ try:\n req_dict = dict()\n req_dict['project_id']\
\ = Mongo.project_id\n req_dict['id'] = Mongo.query_filter\n\
\ req_dict['city'] = city\n req_dict['input_data']\
\ = data\n return req_dict\n except Exception\
\ as e:\n logger.exception(f'Exception - {e}')\n\n \
\ def insert_one(self, data, city):\n try:\n \
\ db = self.client[self.database]\n collection\
\ = db[self.collection]\n req_dict = self.data_dict(data=data,\
\ city=city)\n response = collection.insert_one(req_dict)\n\
\ print(\"mongo_uri\", mongo_uri_)\n project_id_ = pipeline_param['PROJECT_ID']\n\
\ query_filter_ = pipeline_param['QUERY_FILTER']\n try:\n\n class\
\ CommonConstants:\n bgrimm_string_level_tags = 'bgrimm_string_level_tags'\n\
\ panel_id = 'panel_id'\n sub_id = 'sub_id'\n \
\ inv_id_mppt_id = 'inv_id_mppt_id'\n tags_property_raw =\
\ 'raw'\n tags_property_predicted = 'predicted'\n tags_property_efficiency\
\ = 'efficiency'\n bgrim_tags_property_efficiency = 'Efficiency'\n\
\ tags_property_efficiency_inv = 'efficiency'\n tags_property_efficiency_plant\
\ = 'efficiency_plant'\n mppt_coefficients = 'mppt_coefficients'\n\
\n class MongoConstants:\n # DB\n db = db_\n\
\ # collections\n collection = collection_\n\n \
\ class Mongo:\n mongo_uri = mongo_uri_\n project_id\
\ = project_id_\n query_filter = query_filter_\n\n class\
\ MongoConnect:\n def __init__(self, uri, database, collection):\n\
\ try:\n self.uri = uri\n \
\ self.client = MongoClient(self.uri, connect=False)\n \
\ self.database = database\n self.collection = collection\n\
\ except Exception as e:\n logger.exception(f'Exception\
\ - {e}')\n\n @staticmethod\n def data_dict(data, city):\n\
\ try:\n req_dict = dict()\n \
\ req_dict['project_id'] = Mongo.project_id\n req_dict['id']\
\ = Mongo.query_filter\n req_dict['city'] = city\n \
\ req_dict['input_data'] = data\n return\
\ req_dict\n except Exception as e:\n logger.exception(f'Exception\
\ - {e}')\n\n def insert_one(self, data, city):\n \
\ try:\n db = self.client[self.database]\n \
\ collection = db[self.collection]\n req_dict\
\ = self.data_dict(data=data, city=city)\n response = collection.insert_one(req_dict)\n\
\ return response.inserted_id\n except Exception\
\ as e:\n logger.exception(f'Exception - {e}')\n\n \
\ def find_one(self, query, filter_dict=None):\n try:\n\
......@@ -87,55 +94,52 @@ spec:
\ collection = db[self.collection]\n response\
\ = collection.find_one(query, filter_dict)\n return response\n\
\ except Exception as e:\n logger.exception(f'Exception\
\ - {e}')\n\n mongo_conn = MongoConnect(uri=Mongo.mongo_uri, database=MongoConstants.db,\n\
\ collection=MongoConstants.collection)\n\
\ - {e}')\n\n tracemalloc.clear_traces()\n mongo_conn = MongoConnect(uri=Mongo.mongo_uri,\
\ database=MongoConstants.db,\n collection=MongoConstants.collection)\n\
\ if mongo_conn is None:\n logger.info(f'mongodb is not\
\ connected, please check')\n else:\n logger.info(f'mongodb\
\ is connected, mongo conn - {mongo_conn}')\n\n df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({\"\
$and\": [{\"id\": \"bgrimm_string_level_tags\"},\n \
\ {\"city\": city},\n\
\ \
\ {\"tags_property\": \"raw\"}]})\n \
\ ['input_data'], orient='index')\n\n df_predicted_tags\
\ = pd.DataFrame.from_dict(mongo_conn.find_one({\"$and\": [{\"id\": \"bgrimm_string_level_tags\"\
},\n \
\ {\"city\": city},\n \
\ {\"tags_property\": \"predicted\"\
}]})\n ['input_data'],\
\ connected, please check')\n else:\n tracemalloc.clear_traces()\n\
\ logger.info(f'mongo conn - {mongo_conn}')\n\n df_raw_tags\
\ = pd.DataFrame.from_dict(mongo_conn.find_one({\"$and\": [\n \
\ {\"id\": CommonConstants.bgrimm_string_level_tags}, {\"city\": city},\n\
\ {\"tags_property\": CommonConstants.tags_property_raw}]})['input_data'],\
\ orient='index')\n\n df_predicted_tags = pd.DataFrame.from_dict(mongo_conn.find_one({\"\
$and\": [\n {\"id\": CommonConstants.bgrimm_string_level_tags},\
\ {\"city\": city},\n {\"tags_property\": CommonConstants.tags_property_predicted}]})['input_data'],\
\ orient='index')\n\n df_efficiency_tags = pd.DataFrame.from_dict(mongo_conn.find_one({\"\
$and\": [\n {\"id\": CommonConstants.bgrimm_string_level_tags},\
\ {\"city\": city},\n {\"tags_property\": CommonConstants.tags_property_efficiency}]})['input_data'],\
\ orient='index')\n\n df_raw_tags.reset_index(inplace=True)\n \
\ df_raw_tags.rename(columns={'index': 'tag_name'}, inplace=True)\n\
\ df_predicted_tags.reset_index(inplace=True)\n df_predicted_tags.rename(columns={'index':\
\ 'tag_name'}, inplace=True)\n\n try:\n # df_coefficients\
\ = pd.DataFrame.from_dict(\n # mongo_conn.find_one({\"\
$and\": [{\"id\": \"bgrimm_string_level_tags\"},\n # \
\ {\"city\": city},\n # \
\ {\"tags_property\":\n # \
\ \"mppt_coefficients\"}]})\n \
\ # ['input_data'], orient='index')\n df_coefficients\
\ = pd.DataFrame()\n except Exception as er:\n logger.exception(f\"\
Coefficient dataframe unavailable with message: {er}\")\n df_coefficients\
\ = pd.DataFrame()\n\n del mongo_conn\n\n df_coefficients.reset_index(inplace=True)\n\
\ df_coefficients.rename(columns={'index': 'inv_id_mppt_id'}, inplace=True)\n\
\n tracemalloc.clear_traces()\n tracemalloc.get_traced_memory()\n\
\ final_dict = {\"raw\": df_raw_tags.to_dict('records'), \"predicted\"\
: df_predicted_tags.to_dict('records'),\n \"coefficients\"\
: df_coefficients.to_dict('records')}\n print(final_dict)\n \
\ return final_dict\n except Exception as e:\n logger.exception(f'Exception\
\ - {e}')\n\ndef _serialize_json(obj) -> str:\n if isinstance(obj, str):\n\
\ return obj\n import json\n\n def default_serializer(obj):\n\
\ if hasattr(obj, 'to_struct'):\n return obj.to_struct()\n\
\ else:\n raise TypeError(\n \"Object of\
\ type '%s' is not JSON serializable and does not have .to_struct() method.\"\
\n % obj.__class__.__name__)\n\n return json.dumps(obj,\
\ default=default_serializer, sort_keys=True)\n\nimport json\nimport argparse\n\
_parser = argparse.ArgumentParser(prog='Get tags function', description='')\n\
_parser.add_argument(\"--pipeline-param\", dest=\"pipeline_param\", type=json.loads,\
\ required=True, default=argparse.SUPPRESS)\n_parser.add_argument(\"----output-paths\"\
, dest=\"_output_paths\", type=str, nargs=1)\n_parsed_args = vars(_parser.parse_args())\n\
_output_files = _parsed_args.pop(\"_output_paths\", [])\n\n_outputs = get_tags_function(**_parsed_args)\n\
\n_outputs = [_outputs]\n\n_output_serializers = [\n _serialize_json,\n\
\n]\n\nimport os\nfor idx, output_file in enumerate(_output_files):\n try:\n\
\ os.makedirs(os.path.dirname(output_file))\n except OSError:\n\
\ 'tag_name'}, inplace=True)\n df_efficiency_tags.reset_index(inplace=True)\n\
\ df_efficiency_tags.rename(columns={'index': 'tag_name'}, inplace=True)\n\
\n # df_coefficients = pd.DataFrame.from_dict(mongo_conn.find_one(\n\
\ # {\"$and\": [{\"id\": CommonConstants.bgrimm_string_level_tags},\
\ {\"city\": city},\n # {\"tags_property\": CommonConstants.mppt_coefficients}]})['input_data'],\
\ orient='index')\n\n # df_coefficients.reset_index(inplace=True)\n\
\ # df_coefficients.rename(columns={'index': CommonConstants.inv_id_mppt_id},\
\ inplace=True)\n\n df_coefficients = pd.DataFrame()\n \
\ tracemalloc.clear_traces()\n del mongo_conn\n final_dict\
\ = {\"raw\": df_raw_tags.to_dict('records'), \"predicted\": df_predicted_tags.to_dict('records'),\n\
\ \"coefficients\": df_coefficients.to_dict('records'),\n\
\ \"efficiency\": df_efficiency_tags.to_dict('records')}\n\
\ print(final_dict)\n return final_dict\n except\
\ Exception as e:\n logger.exception(f'Exception - {e}')\n\ndef _serialize_json(obj)\
\ -> str:\n if isinstance(obj, str):\n return obj\n import json\n\
\n def default_serializer(obj):\n if hasattr(obj, 'to_struct'):\n\
\ return obj.to_struct()\n else:\n raise TypeError(\n\
\ \"Object of type '%s' is not JSON serializable and does not\
\ have .to_struct() method.\"\n % obj.__class__.__name__)\n\
\n return json.dumps(obj, default=default_serializer, sort_keys=True)\n\
\nimport json\nimport argparse\n_parser = argparse.ArgumentParser(prog='Get\
\ tags function', description='')\n_parser.add_argument(\"--pipeline-param\"\
, dest=\"pipeline_param\", type=json.loads, required=True, default=argparse.SUPPRESS)\n\
_parser.add_argument(\"----output-paths\", dest=\"_output_paths\", type=str,\
\ nargs=1)\n_parsed_args = vars(_parser.parse_args())\n_output_files = _parsed_args.pop(\"\
_output_paths\", [])\n\n_outputs = get_tags_function(**_parsed_args)\n\n_outputs\
\ = [_outputs]\n\n_output_serializers = [\n _serialize_json,\n\n]\n\nimport\
\ os\nfor idx, output_file in enumerate(_output_files):\n try:\n \
\ os.makedirs(os.path.dirname(output_file))\n except OSError:\n \
\ pass\n with open(output_file, 'w') as f:\n f.write(_output_serializers[idx](_outputs[idx]))\n"
env:
- name: MONGO_DB
......@@ -158,7 +162,7 @@ spec:
metadata:
annotations:
pipelines.kubeflow.org/arguments.parameters: '{"pipeline_param": "{{inputs.parameters.pipeline_param}}"}'
pipelines.kubeflow.org/component_ref: '{"digest": "9e20b98ab76dc4ecd38d0caee7b8cddc09335ccb97bab77593a108981db06ae8",
pipelines.kubeflow.org/component_ref: '{"digest": "43d2ece064d7a148052c83f4fba205fbc195cf65444819b9815d7c50aedf011d",
"url": "input_components/get_tags_component/component.yml"}'
pipelines.kubeflow.org/component_spec: '{"implementation": {"container": {"args":
["--pipeline-param", {"inputValue": "pipeline_param"}, "----output-paths",
......@@ -171,10 +175,16 @@ spec:
-u \"$program_path\" \"$@\"\n", "def get_tags_function(pipeline_param):\n import
pandas as pd\n from loguru import logger\n import warnings\n import
tracemalloc\n import os\n from pymongo import MongoClient\n city
= os.getenv(\"CITY\")\n db_ = os.getenv(\"MONGO_DB\")\n print(pipeline_param)\n print(\"--\",pipeline_param[\"MONGO_URI\"])\n #
collections\n collection_ = os.getenv(\"MONGO_COLLECTION\")\n mongo_uri_
= pipeline_param[''MONGO_URI'']\n print(\"mongo_uri\",mongo_uri_)\n project_id_
= pipeline_param[''PROJECT_ID'']\n query_filter_ = pipeline_param[''QUERY_FILTER'']\n try:\n class
= os.getenv(\"CITY\")\n db_ = os.getenv(\"MONGO_DB\")\n print(pipeline_param)\n print(\"--\",
pipeline_param[\"MONGO_URI\"])\n # collections\n collection_ = os.getenv(\"MONGO_COLLECTION\")\n mongo_uri_
= pipeline_param[''MONGO_URI'']\n print(\"mongo_uri\", mongo_uri_)\n project_id_
= pipeline_param[''PROJECT_ID'']\n query_filter_ = pipeline_param[''QUERY_FILTER'']\n try:\n\n class
CommonConstants:\n bgrimm_string_level_tags = ''bgrimm_string_level_tags''\n panel_id
= ''panel_id''\n sub_id = ''sub_id''\n inv_id_mppt_id
= ''inv_id_mppt_id''\n tags_property_raw = ''raw''\n tags_property_predicted
= ''predicted''\n tags_property_efficiency = ''efficiency''\n bgrim_tags_property_efficiency
= ''Efficiency''\n tags_property_efficiency_inv = ''efficiency''\n tags_property_efficiency_plant
= ''efficiency_plant''\n mppt_coefficients = ''mppt_coefficients''\n\n class
MongoConstants:\n # DB\n db = db_\n # collections\n collection
= collection_\n\n class Mongo:\n mongo_uri = mongo_uri_\n project_id
= project_id_\n query_filter = query_filter_\n\n class
......@@ -195,31 +205,32 @@ spec:
filter_dict is None:\n filter_dict = {\"_id\": 0}\n db
= self.client[self.database]\n collection = db[self.collection]\n response
= collection.find_one(query, filter_dict)\n return response\n except
Exception as e:\n logger.exception(f''Exception - {e}'')\n\n mongo_conn
Exception as e:\n logger.exception(f''Exception - {e}'')\n\n tracemalloc.clear_traces()\n mongo_conn
= MongoConnect(uri=Mongo.mongo_uri, database=MongoConstants.db,\n collection=MongoConstants.collection)\n if
mongo_conn is None:\n logger.info(f''mongodb is not connected,
please check'')\n else:\n logger.info(f''mongodb is connected,
mongo conn - {mongo_conn}'')\n\n df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({\"$and\":
[{\"id\": \"bgrimm_string_level_tags\"},\n {\"city\":
city},\n {\"tags_property\":
\"raw\"}]})\n [''input_data''],
please check'')\n else:\n tracemalloc.clear_traces()\n logger.info(f''mongo
conn - {mongo_conn}'')\n\n df_raw_tags = pd.DataFrame.from_dict(mongo_conn.find_one({\"$and\":
[\n {\"id\": CommonConstants.bgrimm_string_level_tags}, {\"city\":
city},\n {\"tags_property\": CommonConstants.tags_property_raw}]})[''input_data''],
orient=''index'')\n\n df_predicted_tags = pd.DataFrame.from_dict(mongo_conn.find_one({\"$and\":
[{\"id\": \"bgrimm_string_level_tags\"},\n {\"city\":
city},\n {\"tags_property\":
\"predicted\"}]})\n [''input_data''],
[\n {\"id\": CommonConstants.bgrimm_string_level_tags}, {\"city\":
city},\n {\"tags_property\": CommonConstants.tags_property_predicted}]})[''input_data''],
orient=''index'')\n\n df_efficiency_tags = pd.DataFrame.from_dict(mongo_conn.find_one({\"$and\":
[\n {\"id\": CommonConstants.bgrimm_string_level_tags}, {\"city\":
city},\n {\"tags_property\": CommonConstants.tags_property_efficiency}]})[''input_data''],
orient=''index'')\n\n df_raw_tags.reset_index(inplace=True)\n df_raw_tags.rename(columns={''index'':
''tag_name''}, inplace=True)\n df_predicted_tags.reset_index(inplace=True)\n df_predicted_tags.rename(columns={''index'':
''tag_name''}, inplace=True)\n\n try:\n # df_coefficients
= pd.DataFrame.from_dict(\n # mongo_conn.find_one({\"$and\":
[{\"id\": \"bgrimm_string_level_tags\"},\n # {\"city\":
city},\n # {\"tags_property\":\n # \"mppt_coefficients\"}]})\n # [''input_data''],
orient=''index'')\n df_coefficients = pd.DataFrame()\n except
Exception as er:\n logger.exception(f\"Coefficient dataframe
unavailable with message: {er}\")\n df_coefficients = pd.DataFrame()\n\n del
mongo_conn\n\n df_coefficients.reset_index(inplace=True)\n df_coefficients.rename(columns={''index'':
''inv_id_mppt_id''}, inplace=True)\n\n tracemalloc.clear_traces()\n tracemalloc.get_traced_memory()\n final_dict
= {\"raw\": df_raw_tags.to_dict(''records''), \"predicted\": df_predicted_tags.to_dict(''records''),\n \"coefficients\":
df_coefficients.to_dict(''records'')}\n print(final_dict)\n return
''tag_name''}, inplace=True)\n df_efficiency_tags.reset_index(inplace=True)\n df_efficiency_tags.rename(columns={''index'':
''tag_name''}, inplace=True)\n\n # df_coefficients = pd.DataFrame.from_dict(mongo_conn.find_one(\n # {\"$and\":
[{\"id\": CommonConstants.bgrimm_string_level_tags}, {\"city\": city},\n # {\"tags_property\":
CommonConstants.mppt_coefficients}]})[''input_data''], orient=''index'')\n\n #
df_coefficients.reset_index(inplace=True)\n # df_coefficients.rename(columns={''index'':
CommonConstants.inv_id_mppt_id}, inplace=True)\n\n df_coefficients
= pd.DataFrame()\n tracemalloc.clear_traces()\n del
mongo_conn\n final_dict = {\"raw\": df_raw_tags.to_dict(''records''),
\"predicted\": df_predicted_tags.to_dict(''records''),\n \"coefficients\":
df_coefficients.to_dict(''records''),\n \"efficiency\":
df_efficiency_tags.to_dict(''records'')}\n print(final_dict)\n return
final_dict\n except Exception as e:\n logger.exception(f''Exception
- {e}'')\n\ndef _serialize_json(obj) -> str:\n if isinstance(obj, str):\n return
obj\n import json\n\n def default_serializer(obj):\n if hasattr(obj,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment