Commit 7cd06240 authored by aakash.bedi's avatar aakash.bedi

updated training module

parent 2b48d9ce
Pipeline #59979 canceled with stage
...@@ -5,17 +5,14 @@ import warnings ...@@ -5,17 +5,14 @@ import warnings
from loguru import logger from loguru import logger
import tracemalloc import tracemalloc
import gc import gc
from scripts.core.engine.mppt_data import GetData
from scripts.core.engine.tags_data import get_tags_data
from scripts.utils.start_end_date import KairosStartEndDate from scripts.utils.start_end_date import KairosStartEndDate
from scripts.utils.preprocessing import DataPreprocessing
from scripts.core.engine.data_training_and_inference import Training
from scripts.core.engine.raw_predicted_tags import get_raw_predicted_tags from scripts.core.engine.raw_predicted_tags import get_raw_predicted_tags
from scripts.core.engine.ml_modelling import AiModelling
warnings.filterwarnings("ignore") warnings.filterwarnings("ignore")
start_date, end_date, start_timestamp, end_timestamp = KairosStartEndDate().start_end_date() start_date, end_date, start_timestamp, end_timestamp = KairosStartEndDate().start_end_date()
logger.info(f'start date - {start_date}')
def orchestrator(): def orchestrator():
try: try:
...@@ -30,75 +27,10 @@ def orchestrator(): ...@@ -30,75 +27,10 @@ def orchestrator():
logger.info(f'raw tags dataframe shape - {df_raw_tags.shape}') logger.info(f'raw tags dataframe shape - {df_raw_tags.shape}')
logger.info(f'predicted tags dataframe shape - {df_predicted_tags.shape}') logger.info(f'predicted tags dataframe shape - {df_predicted_tags.shape}')
for inv_id in list(df_raw_tags['inv_id'].unique()): ai_modelling = AiModelling(df_raw_tags=df_raw_tags, df_coefficients=df_coefficients)
df = df_raw_tags[df_raw_tags['inv_id'] == inv_id] ai_modelling.all_calculations()
for mppt_id in list(df_raw_tags['mppt_id'].unique()): del ai_modelling
print(f'1st memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'2nd memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'3rd memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
df_mppt_level = df[df['mppt_id'] == mppt_id]
df_kairos_data = get_tags_data(df_input_tags=df_mppt_level, start_timestamp=start_timestamp,
end_timestamp=end_timestamp, inv_id=inv_id, mppt_id=mppt_id)
print(f'4th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'5th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'6th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
logger.info(f'Shape of final df - {df_kairos_data.shape}')
mppt_data = GetData()
df_mppt = mppt_data.associate_inv_mppt_id(df=df_kairos_data)
print(f'7th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'8th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'9th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
df_coefficient_multiply = mppt_data.multiply_mppt_coefficients(df_mppt=df_mppt,
df_coefficients=df_coefficients)
print(f'10th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'11th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'12th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
data_preprocessing = DataPreprocessing()
df_clean = data_preprocessing.remove_outliers(df=df_coefficient_multiply,
param_list=['tilt_irradiance', 'voltage_mppt',
'current_mppt'])
print(f'13th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'14th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'15th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
Training(df=df_clean).data_training(inv_id=inv_id, mppt_id=mppt_id)
del df_kairos_data
del df_mppt
del df_coefficient_multiply
print(f'16th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'17th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'18th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
print(f'final allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
logger.info(f'data training for {inv_id}, {mppt_id} has been completed !')
tracemalloc.stop() tracemalloc.stop()
except Exception as e: except Exception as e:
logger.exception(f'Exception - {e}') logger.exception(f'Exception - {e}')
......
from loguru import logger
import tracemalloc
import gc
from scripts.core.engine.tags_data import get_tags_data
from scripts.core.engine.mppt_data import GetData
from scripts.utils.preprocessing import DataPreprocessing
from scripts.core.engine.data_training_and_inference import Training
class AiModelling:
def __init__(self, df_raw_tags, df_coefficients, start_timestamp, end_timestamp):
self.df_raw_tags = df_raw_tags
self.df_coefficients = df_coefficients
self.start_timestamp = start_timestamp
self.end_timestamp = end_timestamp
def all_calculations(self):
try:
for inv_id in list(self.df_raw_tags['inv_id'].unique()):
df = self.df_raw_tags[self.df_raw_tags['inv_id'] == inv_id]
for mppt_id in list(self.df_raw_tags['mppt_id'].unique()):
print(f'1st memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'2nd memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'3rd memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
df_mppt_level = df[df['mppt_id'] == mppt_id]
df_kairos_data = get_tags_data(df_input_tags=df_mppt_level, start_timestamp=self.start_timestamp,
end_timestamp=self.end_timestamp, inv_id=inv_id, mppt_id=mppt_id)
print(f'4th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'5th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'6th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
logger.info(f'Shape of final df - {df_kairos_data.shape}')
mppt_data = GetData()
df_mppt = mppt_data.associate_inv_mppt_id(df=df_kairos_data)
print(f'7th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'8th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'9th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
df_coefficient_multiply = mppt_data.multiply_mppt_coefficients(df_mppt=df_mppt,
df_coefficients=self.df_coefficients)
print(f'10th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'11th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'12th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
data_preprocessing = DataPreprocessing()
df_clean = data_preprocessing.remove_outliers(df=df_coefficient_multiply,
param_list=['tilt_irradiance', 'voltage_mppt',
'current_mppt'])
print(f'13th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'14th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'15th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
Training(df=df_clean).data_training(inv_id=inv_id, mppt_id=mppt_id)
del df_kairos_data
del df_mppt
del df_coefficient_multiply
print(f'16th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
gc.collect()
tracemalloc.reset_peak()
print(f'17th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
tracemalloc.clear_traces()
print(f'18th memory allocation for {inv_id} & {mppt_id} - {tracemalloc.get_traced_memory()}')
except Exception as e:
logger.exception(f'Exception - {e}')
def __del__(self):
try:
print('destructor called, die!')
except Exception as e:
logger.exception(f'Exception - {e}')
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment