Commit ff9304ef authored by aakash.bedi's avatar aakash.bedi

added calculation script

parent 9a0e88b5
Pipeline #58113 failed with stage
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
data
.idea/
.vscode/
.pytest_cache/
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
stages:
- auto-tagging
- validate
- scan
- build
- deploy
- update
variables:
MYSQL_CONNECTION: "mysql -h $MYSQL_HOST -u $MYSQL_USER -p$MYSQL_PASS "
STATUS_SCRIPT: /home/gitlab-runner/monitor/deployment-status.sh
HELM_CHART: /home/gitlab-runner/kubernetes/ilens/$QA_ENV/ilens-modules
VARIABLES_YML: variables.yml
DEPLOYMENT_YML: $CI_PROJECT_NAME.yml
TIMEOUT: 960s
before_script:
- val=`echo $($MYSQL_CONNECTION -e "SELECT COUNT(*) FROM $VERSION_DB.$DB_TABLE WHERE category='Server' AND type='Service' AND os='docker' AND module_name='$CI_PROJECT_NAME' ") | cut -d " " -f2`
- if [ $val == 0 ]; then $MYSQL_CONNECTION -e "INSERT INTO $VERSION_DB.$DB_TABLE values('Server','Service','$CI_PROJECT_NAME','docker', '2', '0', '0', '0')";fi
- QA=$($MYSQL_CONNECTION -N -e "SELECT qa FROM $VERSION_DB.$DB_TABLE where module_name = '$CI_PROJECT_NAME' AND type = 'Service' AND category = 'Server' AND os = 'docker'")
- DEV=$($MYSQL_CONNECTION -N -e "SELECT dev FROM $VERSION_DB.$DB_TABLE where module_name = '$CI_PROJECT_NAME' AND type = 'Service' AND category = 'Server' AND os = 'docker'")
- UAT=$(mysql -h $MYSQL_HOST -u $MYSQL_USER -p$MYSQL_PASS -N -e "SELECT uat FROM $VERSION_DB.$DB_TABLE where module_name = '$CI_PROJECT_NAME' AND type = 'Service' AND category = 'Server' AND os = 'docker'")
- PROD=$($MYSQL_CONNECTION -N -e "SELECT prod FROM $VERSION_DB.$DB_TABLE where module_name = '$CI_PROJECT_NAME' AND type = 'Service' AND category = 'Server' AND os = 'docker'")
auto-tagging:
stage: auto-tagging
before_script:
- val=`echo $($MYSQL_CONNECTION -e "SELECT COUNT(*) FROM $VERSION_DB.$VERSION_RELEASE_TABLE WHERE module_name='$CI_PROJECT_NAME' ") | cut -d " " -f2`
- if [ $val == 0 ]; then $MYSQL_CONNECTION -N -e "INSERT INTO $VERSION_DB.$VERSION_RELEASE_TABLE values('$CI_PROJECT_NAME', 'iLens', '6', '3', '0', '0')";fi
- ILENS=$($MYSQL_CONNECTION -N -e "SELECT ilens_version FROM "$VERSION_DB.$VERSION_RELEASE_TABLE" where module_name = '$CI_PROJECT_NAME'")
- RELEASE=$($MYSQL_CONNECTION -N -e "SELECT release_version FROM "$VERSION_DB.$VERSION_RELEASE_TABLE" where module_name = '$CI_PROJECT_NAME'")
- FEATURE=$($MYSQL_CONNECTION -N -e "SELECT feature_version FROM "$VERSION_DB.$VERSION_RELEASE_TABLE" where module_name = '$CI_PROJECT_NAME'")
- PATCH=$($MYSQL_CONNECTION -N -e "SELECT patch_version FROM "$VERSION_DB.$VERSION_RELEASE_TABLE" where module_name = '$CI_PROJECT_NAME'")
script:
- SOURCE_BRANCH=$(echo $CI_COMMIT_TITLE | cut -f 3 -d " " | cut -f 1 -d "/" | cut -f 2 -d "'")
- >
if [ "$SOURCE_BRANCH" = "QA" ]; then
((RELEASE=RELEASE+1)) && FEATURE=0 && PATCH=0;
TAG_NAME=v$ILENS.$RELEASE.$FEATURE
IMAGE_URL=azrilensprod.azurecr.io/ilens/release/versions/v"$ILENS.$RELEASE:$CI_PROJECT_NAME-$TAG_NAME"
PROD=$RELEASE; QA=0; DEV=0;
$MYSQL_CONNECTION -e "UPDATE $VERSION_DB.$DB_TABLE SET prod='$PROD' ,qa='$QA', dev='$DEV' WHERE module_name='$CI_PROJECT_NAME' AND type='Service' AND category='Server' AND os='docker'"
elif [ $SOURCE_BRANCH == "feature" ]; then
((FEATURE=FEATURE+1)) && PATCH=0;
TAG_NAME=v$ILENS.$RELEASE.$FEATURE
IMAGE_URL=azrilensprod.azurecr.io/ilens/release/versions/v"$ILENS.$RELEASE:$CI_PROJECT_NAME-$TAG_NAME"
elif [ $SOURCE_BRANCH == "patch" ]; then
((PATCH=PATCH+1));
TAG_NAME=v$ILENS.$RELEASE.$FEATURE.$PATCH
IMAGE_URL=azrilensprod.azurecr.io/ilens/release/versions/v"$ILENS.$RELEASE:$CI_PROJECT_NAME-$TAG_NAME"
else
exit 1
fi
- echo -e "\n\nImage:" $IMAGE_URL >> ReleaseNote.txt
- sed -i "1s|^|Version":" $TAG_NAME\n|" ReleaseNote.txt
- sed -i "1s|^|Module Name":" $CI_PROJECT_NAME\n|" ReleaseNote.txt
- docker build -t $IMAGE_URL .
- docker push $IMAGE_URL
- docker rmi --force $IMAGE_URL
- URL=$(echo $CI_PROJECT_URL | sed 's|https://||')
- git remote set-url origin https://$GIT_USRNAME:$GIT_USRPASSWD@$URL
- git config user.email "devopsilens@gmail.com"
- git config user.name "$GIT_USRNAME"
- git tag -a $TAG_NAME -F ReleaseNote.txt
- git push origin $TAG_NAME
- $MYSQL_CONNECTION -e "UPDATE $VERSION_DB.$VERSION_RELEASE_TABLE SET release_version='$RELEASE', feature_version='$FEATURE', patch_version='$PATCH' WHERE module_name = '$CI_PROJECT_NAME' "
- $MYSQL_CONNECTION -e "INSERT INTO $HISTORY_DB.$VERSION_RELEASE_TABLE values('$CI_JOB_ID', '$CI_PROJECT_NAME','iLens', '$ILENS.$RELEASE.$FEATURE', '$CI_COMMIT_SHA', '$GITLAB_USER_NAME', '$CI_COMMIT_REF_NAME')"
tags:
- shell
only:
- master
#~~~~~| Requirements.txt version check |~~~~~#
package-version-check:
stage: validate
script:
- REQUIREMENTS=$(cat requirements.txt)
- FAILED=0
- >
for REQ in ${REQUIREMENTS[@]};
do
PKG=$(echo $REQ | tr = " " | awk '{print $1}')
VER=$(echo $REQ | tr = " " | awk '{print $2}')
VER=${VER//[^[:alnum:]]/}
if [ ! -z "${VER//[0-9]}" ] || [ -z $VER ]; then
echo " Package version not specified for: $PKG "
FAILED=`expr $FAILED + 1`
fi
done
- if [ $FAILED -gt 0 ]; then exit 1; fi
only:
- QA
tags:
- shell
#~~~~~| QA K8 |~~~~~#
qa-k8-deployment:
stage: deploy
script:
- REGISTRY_URL=azacrknowledgelens.azurecr.io/knowledgelens/products/ilens/qa
- export KUBECONFIG=/home/gitlab-runner/.kube/$QA_ENV
- NAMESPACE=ilens-core
- QA=`expr $QA + 1` && DEV=0
- docker build -t $REGISTRY_URL/$CI_PROJECT_NAME:v$PROD.$QA.$DEV .
- docker push $REGISTRY_URL/$CI_PROJECT_NAME:v$PROD.$QA.$DEV
- echo "Deploying $CI_PROJECT_NAME"
- >
for YML in ${DEPLOYMENT_YML[@]};
do
FILE_PATH=$HELM_CHART/$YML
SERVICE=$(echo $YML | cut -f 1 -d "." )
CURR_VERSION=$(cat $FILE_PATH | grep "imageName:" )
CURR_VERSION=$(echo $CURR_VERSION | cut -f 3 -d ":")
echo " Deploying $SERVICE"
echo " $SERVICE Version: $CURR_VERSION"
sed -E -i'' "s|(.*imageName:.*"$REGISTRY_URL"/).*|\1"$CI_PROJECT_NAME":v"$PROD.$QA.$DEV"|" $FILE_PATH
helm upgrade --install $SERVICE $HELM_CHART -f $FILE_PATH -f $VARIABLES_YML -n $NAMESPACE --history-max 1
if ! sh $STATUS_SCRIPT $SERVICE $NAMESPACE $TIMEOUT ; then
sed -E -i'' "s|(.*imageName:.*"$REGISTRY_URL"/).*|\1"$CI_PROJECT_NAME":"$CURR_VERSION"|" $FILE_PATH
helm upgrade --install $SERVICE $HELM_CHART -f $FILE_PATH -f $VARIABLES_YML -n $NAMESPACE --history-max 1
echo " $SERVICE Reverted to the previous version..."
exit 1
fi
UI_POD=$(kubectl get pods -n $NAMESPACE | grep ilens-ui | awk '{print $1}')
kubectl delete pod $UI_POD -n $NAMESPACE
done
only:
- QA
tags:
- shell
#~~~~~| Vulnerability Scanner |~~~~~#
vulnerability-scanner:
stage: scan
script:
- QA=`expr $QA + 1` && DEV=0
- DOCKER_IMAGE=$CI_PROJECT_NAME:vulnarable-scan
- docker build -t $DOCKER_IMAGE --no-cache .
- trivy image --format template --template "@/home/gitlab-runner/image-scanner/templates/html.tpl" -o imageScanner-$CI_PROJECT_NAME.html $DOCKER_IMAGE
- trivy image --format json -o imageScanner-$CI_PROJECT_NAME.json $DOCKER_IMAGE
- docker rmi --force $DOCKER_IMAGE
- mv imageScanner-$CI_PROJECT_NAME.html /data0/email-util/module/reports/
- >
if ! /home/gitlab-runner/image-scanner/severity_check imageScanner-$CI_PROJECT_NAME.json ; then
cd /home/gitlab-runner/image-scanner/
./mail imageScanner-$CI_PROJECT_NAME.html $DOCKER_IMAGE
fi
only:
- QA
tags:
- shell
tag-update-qa:
stage: update
script:
- QA=`expr $QA + 1` && DEV=0
- REGISTRY_URL=azacrknowledgelens.azurecr.io/knowledgelens/products/ilens/qa
- docker rmi --force $REGISTRY_URL/$CI_PROJECT_NAME:v$PROD.$QA.$DEV
- $MYSQL_CONNECTION -e "INSERT INTO $HISTORY_DB.$DB_TABLE values('$CI_JOB_ID','Server','Service', '$CI_PROJECT_NAME','docker', '$PROD.$QA.$DEV', '$CI_COMMIT_SHA', '$GITLAB_USER_NAME', '$CI_COMMIT_REF_NAME')"
- $MYSQL_CONNECTION -e "UPDATE $VERSION_DB.$DB_TABLE SET prod='$PROD' ,qa='$QA', dev='$DEV' WHERE module_name = '$CI_PROJECT_NAME' AND type = 'Service' AND category = 'Server' AND os = 'docker'"
dependencies:
- qa-k8-deployment
only:
- QA
tags:
- shell
#~~~~~| DEV 220 |~~~~~#
dev-deployment-220:
stage: deploy
script:
- tar czvf $CI_PROJECT_NAME.tar.gz *
- echo "Deploying to the dev 220 server..."
- sshpass -p $OFC_PASSWD ssh $OFC_USERNAME@$OFC_HOSTNAME "mkdir -p /tmp/$CI_PROJECT_NAME/tar/"
- sshpass -p $OFC_PASSWD ssh $OFC_USERNAME@$OFC_HOSTNAME "mkdir -p /tmp/$CI_PROJECT_NAME/untar/"
- sshpass -p $OFC_PASSWD scp $CI_PROJECT_NAME.tar.gz $OFC_USERNAME@$OFC_HOSTNAME:/tmp/$CI_PROJECT_NAME/tar/
- sshpass -p $OFC_PASSWD ssh $OFC_USERNAME@$OFC_HOSTNAME "tar xzvf /tmp/$CI_PROJECT_NAME/tar/$CI_PROJECT_NAME.tar.gz -C /tmp/$CI_PROJECT_NAME/untar/"
- sshpass -p $OFC_PASSWD ssh $OFC_USERNAME@$OFC_HOSTNAME "rsync -r /tmp/$CI_PROJECT_NAME/untar/* /opt/services/ilens2.0/$CI_PROJECT_NAME/"
- sshpass -p $OFC_PASSWD ssh $OFC_USERNAME@$OFC_HOSTNAME "/home/svc-ilens/.miniconda3/envs/ilens37/bin/pip install -r /opt/services/ilens2.0/$CI_PROJECT_NAME/requirements.txt"
- sshpass -p $OFC_PASSWD ssh $OFC_USERNAME@$OFC_HOSTNAME "sudo systemctl restart ilens_2.0_dev_$CI_PROJECT_NAME.service"
- sshpass -p $OFC_PASSWD ssh $OFC_USERNAME@$OFC_HOSTNAME "sudo systemctl status ilens_2.0_dev_$CI_PROJECT_NAME.service"
after_script:
- sshpass -p $OFC_PASSWD ssh $OFC_USERNAME@$OFC_HOSTNAME "rm -rf /tmp/$CI_PROJECT_NAME"
- rm -f $CI_PROJECT_NAME.tar.gz
only:
- develop
tags:
- shell
#~~~~~| CODE QUALITY |~~~~~#
codequality:
stage: deploy
image: azacrknowledgelens.azurecr.io/knowledgelens/klit-operation/devops/gitlab-runner:ubuntu-sonarscanner
script:
- /opt/sonar-scanner/bin/sonar-scanner -Dsonar.projectKey=$CI_PROJECT_NAME -Dsonar.projectName=$CI_PROJECT_NAME -Dsonar.typescript.node=./node/node -Dsonar.login=admin -Dsonar.password=admin -Dsonar.sources=.
- sleep 5
- python3 /opt/code_quality_report/static_code_quality_report_csv_v2.py $CI_PROJECT_NAME $GITLAB_USER_EMAIL,$EMAIL_TO $EMAIL_FROM $EMAIL_PASSWD False admin admin
only:
- develop
tags:
- docker
FROM python:3.7-buster
RUN apt-get update -y && \
apt install -y openjdk-11-jre && \
apt install -y libtiff5-dev libjpeg62-turbo-dev && \
apt install -y zlib1g-dev libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev && \
apt install -y tk8.6-dev python-tk pdftk libmagickwand-dev
COPY . /code
WORKDIR /code
RUN pip install -r requirements.txt
CMD [ "python","app.py" ]
\ No newline at end of file
# Dalmia degradation calculation # Dalmia degradation calculation module
\ No newline at end of file \ No newline at end of file
if __name__ == "__main__":
from dotenv import load_dotenv
load_dotenv(dotenv_path='config.env')
import pandas as pd
import numpy as np
import warnings
from loguru import logger
from scripts.utils.pycaret_util import PycaretUtil
from scripts.core.engine.mppt_data import GetData
from scripts.utils.reading_tags import GetTags
from scripts.core.engine.tags_data import get_tags_data
from scripts.utils.start_end_date import KairosStartEndDate
from scripts.utils.preprocessing import DataPreprocessing
from scripts.core.engine.inv_and_mppt_level import TrainingInference
warnings.filterwarnings("ignore")
base_path = 'data_folder'
start_date, end_date, start_timestamp, end_timestamp = KairosStartEndDate().start_end_date()
def get_tag_details():
try:
get_tags = GetTags(base_path=base_path)
tags_excel = get_tags.read_tag_excel()
mppt_tags = get_tags.get_mppt_tags(df=tags_excel, substrings='MPPT')
df = get_tags_data(mppt_tags=mppt_tags,
start_timestamp=start_timestamp,
end_timestamp=end_timestamp)
logger.info(f'Shape of final df - {df.shape}')
mppt_data = GetData()
df_mppt = mppt_data.current_voltage_mppt_data(df=df)
data_preprocessing = DataPreprocessing()
df_mppt = data_preprocessing.remove_outliers(df=df_mppt, param_list=['tilt_irradiance', 'voltage_mppt', 'current_mppt'])
df_mppt, df_train, df_test = data_preprocessing.train_test_split(df=df_mppt)
unique_inv_id = list(df_train.inv_id.unique())
unique_mppt_id = list(df_train.mppt_id.unique())
get_training_inference = TrainingInference(df=df_mppt, df_train=df_train, df_test=df_test)
for inv_id in unique_inv_id:
for mppt_id in unique_mppt_id:
try:
model, scaler_x, scaler_y = get_training_inference.data_training(inv_id=inv_id, mppt_id=mppt_id)
x_test, y_test, predictions = get_training_inference.data_inference(scaler_x=scaler_x,
scaler_y=scaler_y,
model=model,
inv_id=inv_id,
mppt_id=mppt_id)
df_result = mppt_data.get_final_data(x_test=x_test, y_test=y_test, predictions=predictions)
logger.info(f'{df_result.shape}')
except Exception as e:
logger.exception(f'Exception - {e}')
except Exception as e:
logger.exception(f'Exception - {e}')
if __name__ == '__main__':
get_tag_details()
{
"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":1000,"learn_sets":["learn"],"name":"experiment"},
"iterations":[
{"learn":[0.2634930983],"iteration":0,"passed_time":0.001261185078,"remaining_time":1.259923893},
{"learn":[0.253410861],"iteration":1,"passed_time":0.002399870698,"remaining_time":1.197535478},
{"learn":[0.2438490327],"iteration":2,"passed_time":0.003549094013,"remaining_time":1.179482244},
{"learn":[0.2348564906],"iteration":3,"passed_time":0.004699198435,"remaining_time":1.17010041},
{"learn":[0.2262217852],"iteration":4,"passed_time":0.005826722539,"remaining_time":1.159517785},
{"learn":[0.2179621507],"iteration":5,"passed_time":0.007036831895,"remaining_time":1.165768484},
{"learn":[0.2099580794],"iteration":6,"passed_time":0.008081617729,"remaining_time":1.146435201},
{"learn":[0.2027786939],"iteration":7,"passed_time":0.009227337612,"remaining_time":1.144189864},
{"learn":[0.1957826204],"iteration":8,"passed_time":0.01029237146,"remaining_time":1.133304458},
{"learn":[0.1892058504],"iteration":9,"passed_time":0.01138139661,"remaining_time":1.126758265},
{"learn":[0.1827568156],"iteration":10,"passed_time":0.01255581581,"remaining_time":1.128881985},
{"learn":[0.176781011],"iteration":11,"passed_time":0.01369832264,"remaining_time":1.127828564},
{"learn":[0.1713163733],"iteration":12,"passed_time":0.0148479858,"remaining_time":1.127304768},
{"learn":[0.1657838877],"iteration":13,"passed_time":0.01598568711,"remaining_time":1.125849107},
{"learn":[0.1606202362],"iteration":14,"passed_time":0.01703558913,"remaining_time":1.118670353},
{"learn":[0.1557479063],"iteration":15,"passed_time":0.01812180335,"remaining_time":1.114490906},
{"learn":[0.1514837694],"iteration":16,"passed_time":0.0192531718,"remaining_time":1.113286346},
{"learn":[0.1471266051],"iteration":17,"passed_time":0.02038810524,"remaining_time":1.112284408},
{"learn":[0.1433408142],"iteration":18,"passed_time":0.02161529298,"remaining_time":1.116031706},
{"learn":[0.139479269],"iteration":19,"passed_time":0.02264944468,"remaining_time":1.109822789},
{"learn":[0.1358926662],"iteration":20,"passed_time":0.02378726378,"remaining_time":1.108939583},
{"learn":[0.1323209643],"iteration":21,"passed_time":0.02486889952,"remaining_time":1.105535624},
{"learn":[0.1289255371],"iteration":22,"passed_time":0.02592977979,"remaining_time":1.10145195},
{"learn":[0.1258959934],"iteration":23,"passed_time":0.02704050059,"remaining_time":1.099647024},
{"learn":[0.1230355649],"iteration":24,"passed_time":0.02818784319,"remaining_time":1.099325884},
{"learn":[0.120546281],"iteration":25,"passed_time":0.02933229444,"remaining_time":1.098832876},
{"learn":[0.1181934737],"iteration":26,"passed_time":0.03048765952,"remaining_time":1.098684915},
{"learn":[0.115822833],"iteration":27,"passed_time":0.03159418723,"remaining_time":1.096769643},
{"learn":[0.1136284311],"iteration":28,"passed_time":0.03271287002,"remaining_time":1.095317131},
{"learn":[0.111502889],"iteration":29,"passed_time":0.03385916142,"remaining_time":1.094779552},
{"learn":[0.1094919865],"iteration":30,"passed_time":0.03501126541,"remaining_time":1.094384393},
{"learn":[0.1076723822],"iteration":31,"passed_time":0.03610947492,"remaining_time":1.092311616},
{"learn":[0.1060015476],"iteration":32,"passed_time":0.03716401734,"remaining_time":1.089018326},
{"learn":[0.1043769365],"iteration":33,"passed_time":0.03831216988,"remaining_time":1.088516356},
{"learn":[0.1028133138],"iteration":34,"passed_time":0.0394293392,"remaining_time":1.087123209},
{"learn":[0.1014498222],"iteration":35,"passed_time":0.04059402743,"remaining_time":1.087017846},
{"learn":[0.1000545332],"iteration":36,"passed_time":0.04173817264,"remaining_time":1.086320547},
{"learn":[0.09891068665],"iteration":37,"passed_time":0.04288491668,"remaining_time":1.085665522},
{"learn":[0.09766513557],"iteration":38,"passed_time":0.04407512036,"remaining_time":1.086056171},
{"learn":[0.09659213387],"iteration":39,"passed_time":0.04528271308,"remaining_time":1.086785114},
{"learn":[0.09562108466],"iteration":40,"passed_time":0.04645223423,"remaining_time":1.086529089},
{"learn":[0.09466091033],"iteration":41,"passed_time":0.04757547735,"remaining_time":1.085173983},
{"learn":[0.09385268939],"iteration":42,"passed_time":0.04868125136,"remaining_time":1.083440873},
{"learn":[0.09298788863],"iteration":43,"passed_time":0.04982096363,"remaining_time":1.082473664},
{"learn":[0.09234050158],"iteration":44,"passed_time":0.05091971085,"remaining_time":1.080629419},
{"learn":[0.09143054051],"iteration":45,"passed_time":0.05202932813,"remaining_time":1.079043023},
{"learn":[0.09082557962],"iteration":46,"passed_time":0.05330640587,"remaining_time":1.080872442},
{"learn":[0.09020965997],"iteration":47,"passed_time":0.05439769143,"remaining_time":1.078887547},
{"learn":[0.08964034695],"iteration":48,"passed_time":0.05545908734,"remaining_time":1.076359022},
{"learn":[0.08897707533],"iteration":49,"passed_time":0.05657689649,"remaining_time":1.074961033},
{"learn":[0.08829656708],"iteration":50,"passed_time":0.05766924465,"remaining_time":1.073100258},
{"learn":[0.08767118378],"iteration":51,"passed_time":0.05877393614,"remaining_time":1.071494067},
{"learn":[0.0870048701],"iteration":52,"passed_time":0.0599309097,"remaining_time":1.070840972},
{"learn":[0.08647536524],"iteration":53,"passed_time":0.06103672855,"remaining_time":1.069273059},
{"learn":[0.08608363476],"iteration":54,"passed_time":0.06216800341,"remaining_time":1.068159331},
{"learn":[0.0856352457],"iteration":55,"passed_time":0.06322342907,"remaining_time":1.065766376},
{"learn":[0.08519791788],"iteration":56,"passed_time":0.06431540749,"remaining_time":1.064025075},
{"learn":[0.08484662922],"iteration":57,"passed_time":0.0653596122,"remaining_time":1.061530253},
{"learn":[0.08449794257],"iteration":58,"passed_time":0.06646846119,"remaining_time":1.060115627},
{"learn":[0.08407515952],"iteration":59,"passed_time":0.0676473062,"remaining_time":1.059807797},
{"learn":[0.08380004489],"iteration":60,"passed_time":0.06881885539,"remaining_time":1.059359102},
{"learn":[0.08353298312],"iteration":61,"passed_time":0.06998604282,"remaining_time":1.058821099},
{"learn":[0.08329583674],"iteration":62,"passed_time":0.0711579283,"remaining_time":1.058332997},
{"learn":[0.08297578691],"iteration":63,"passed_time":0.07223883809,"remaining_time":1.056493007},
{"learn":[0.08264896504],"iteration":64,"passed_time":0.07352317926,"remaining_time":1.057602656},
{"learn":[0.08245568656],"iteration":65,"passed_time":0.07465463063,"remaining_time":1.056476136},
{"learn":[0.08228713242],"iteration":66,"passed_time":0.07580826588,"remaining_time":1.055658389},
{"learn":[0.08203906992],"iteration":67,"passed_time":0.0769105692,"remaining_time":1.054127213},
{"learn":[0.08169533113],"iteration":68,"passed_time":0.07810761533,"remaining_time":1.05388681},
{"learn":[0.08149367476],"iteration":69,"passed_time":0.07930638239,"remaining_time":1.053641937},
{"learn":[0.08124983623],"iteration":70,"passed_time":0.08038527197,"remaining_time":1.051801657},
{"learn":[0.0811358093],"iteration":71,"passed_time":0.08157736703,"remaining_time":1.05144162},
{"learn":[0.08099095381],"iteration":72,"passed_time":0.08278704793,"remaining_time":1.051282102},
{"learn":[0.08079867295],"iteration":73,"passed_time":0.0839705337,"remaining_time":1.050766408},
{"learn":[0.08052402426],"iteration":74,"passed_time":0.08513210212,"remaining_time":1.049962593},
{"learn":[0.08028272418],"iteration":75,"passed_time":0.08625890134,"remaining_time":1.048726643},
{"learn":[0.08016809994],"iteration":76,"passed_time":0.08736149325,"remaining_time":1.047203354},
{"learn":[0.07998524963],"iteration":77,"passed_time":0.08850616727,"remaining_time":1.046188285},
{"learn":[0.07973721768],"iteration":78,"passed_time":0.08963540555,"remaining_time":1.044989981},
{"learn":[0.07963970943],"iteration":79,"passed_time":0.09080696577,"remaining_time":1.044280106},
{"learn":[0.07950279118],"iteration":80,"passed_time":0.09196538448,"remaining_time":1.043409733},
{"learn":[0.07937744156],"iteration":81,"passed_time":0.09306971726,"remaining_time":1.041926835},
{"learn":[0.07915544766],"iteration":82,"passed_time":0.09415917157,"remaining_time":1.040288679},
{"learn":[0.07899744549],"iteration":83,"passed_time":0.09531519962,"remaining_time":1.039389558},
{"learn":[0.07886199028],"iteration":84,"passed_time":0.09645512292,"remaining_time":1.038311029},
{"learn":[0.07880740166],"iteration":85,"passed_time":0.0976488617,"remaining_time":1.037803018},
{"learn":[0.0786895054],"iteration":86,"passed_time":0.09873125435,"remaining_time":1.03611075},
{"learn":[0.07857613754],"iteration":87,"passed_time":0.09985675397,"remaining_time":1.034879087},
{"learn":[0.07848317975],"iteration":88,"passed_time":0.1010580604,"remaining_time":1.034425765},
{"learn":[0.07831429294],"iteration":89,"passed_time":0.1022296431,"remaining_time":1.03365528},
{"learn":[0.0781428239],"iteration":90,"passed_time":0.1034191895,"remaining_time":1.03305542},
{"learn":[0.07795031018],"iteration":91,"passed_time":0.1045001295,"remaining_time":1.031370844},
{"learn":[0.0778484655],"iteration":92,"passed_time":0.1055990145,"remaining_time":1.029874259},
{"learn":[0.07780504321],"iteration":93,"passed_time":0.1066619505,"remaining_time":1.028039651},
{"learn":[0.07763279973],"iteration":94,"passed_time":0.1077608031,"remaining_time":1.02656344},
{"learn":[0.07748548907],"iteration":95,"passed_time":0.1088120883,"remaining_time":1.024647165},
{"learn":[0.07733804358],"iteration":96,"passed_time":0.1099981565,"remaining_time":1.024003457},
{"learn":[0.07717508045],"iteration":97,"passed_time":0.111108824,"remaining_time":1.022654686},
{"learn":[0.07713162441],"iteration":98,"passed_time":0.1122899774,"remaining_time":1.021952219},
{"learn":[0.0768757409],"iteration":99,"passed_time":0.1134226441,"remaining_time":1.020803797},
{"learn":[0.07673236925],"iteration":100,"passed_time":0.114526368,"remaining_time":1.019398067},
{"learn":[0.07664926656],"iteration":101,"passed_time":0.115609325,"remaining_time":1.01781543},
{"learn":[0.07653481994],"iteration":102,"passed_time":0.1166431426,"remaining_time":1.015814552},
{"learn":[0.07633559838],"iteration":103,"passed_time":0.1177227449,"remaining_time":1.014226725},
{"learn":[0.07620647641],"iteration":104,"passed_time":0.1188341632,"remaining_time":1.012919772},
{"learn":[0.07603871621],"iteration":105,"passed_time":0.1199733207,"remaining_time":1.011850459},
{"learn":[0.07588740911],"iteration":106,"passed_time":0.1210510206,"remaining_time":1.010266929},
{"learn":[0.0757699586],"iteration":107,"passed_time":0.1220964079,"remaining_time":1.008425887},
{"learn":[0.07562060896],"iteration":108,"passed_time":0.1231817538,"remaining_time":1.006926079},
{"learn":[0.07556604622],"iteration":109,"passed_time":0.1243541268,"remaining_time":1.006137935},
{"learn":[0.07541681729],"iteration":110,"passed_time":0.1254947579,"remaining_time":1.005088647},
{"learn":[0.07534426222],"iteration":111,"passed_time":0.1265810849,"remaining_time":1.003607173},
{"learn":[0.07526223468],"iteration":112,"passed_time":0.1277356885,"remaining_time":1.002668634},
{"learn":[0.07516521336],"iteration":113,"passed_time":0.1288467434,"remaining_time":1.001387848},
{"learn":[0.0750118418],"iteration":114,"passed_time":0.1299234491,"remaining_time":0.9998456734},
{"learn":[0.07486827149],"iteration":115,"passed_time":0.1310364791,"remaining_time":0.9985883404},
{"learn":[0.07468783537],"iteration":116,"passed_time":0.1321030278,"remaining_time":0.9969826799},
{"learn":[0.07455614772],"iteration":117,"passed_time":0.1331597249,"remaining_time":0.9953125204},
{"learn":[0.07443975193],"iteration":118,"passed_time":0.13436302,"remaining_time":0.9947379881},
{"learn":[0.07434605216],"iteration":119,"passed_time":0.1355111682,"remaining_time":0.993748567},
{"learn":[0.0742050227],"iteration":120,"passed_time":0.1366520264,"remaining_time":0.9927035634},
{"learn":[0.07406997988],"iteration":121,"passed_time":0.1378205479,"remaining_time":0.9918560743},
{"learn":[0.07397918601],"iteration":122,"passed_time":0.1389438725,"remaining_time":0.9906811073},
{"learn":[0.07380644402],"iteration":123,"passed_time":0.140108896,"remaining_time":0.9898015554},
{"learn":[0.07369524688],"iteration":124,"passed_time":0.1412294926,"remaining_time":0.988606448},
{"learn":[0.07366510473],"iteration":125,"passed_time":0.1423952007,"remaining_time":0.9877254397},
{"learn":[0.0735577393],"iteration":126,"passed_time":0.1435052689,"remaining_time":0.986457478},
{"learn":[0.07346552314],"iteration":127,"passed_time":0.1446678899,"remaining_time":0.9855499999},
{"learn":[0.07339294965],"iteration":128,"passed_time":0.1458620493,"remaining_time":0.9848515112},
{"learn":[0.07332135786],"iteration":129,"passed_time":0.146953516,"remaining_time":0.9834581455},
{"learn":[0.0732183539],"iteration":130,"passed_time":0.1480455208,"remaining_time":0.9820729583},
{"learn":[0.073141875],"iteration":131,"passed_time":0.149173315,"remaining_time":0.9809275559},
{"learn":[0.07301526617],"iteration":132,"passed_time":0.1502440892,"remaining_time":0.9794107166},
{"learn":[0.07290974481],"iteration":133,"passed_time":0.1513260818,"remaining_time":0.9779730363},
{"learn":[0.07277821121],"iteration":134,"passed_time":0.1524962065,"remaining_time":0.9771053233},
{"learn":[0.07272172031],"iteration":135,"passed_time":0.1536134346,"remaining_time":0.9758971137},
{"learn":[0.07256581515],"iteration":136,"passed_time":0.154674813,"remaining_time":0.9743384208},
{"learn":[0.07243162048],"iteration":137,"passed_time":0.1558164509,"remaining_time":0.9732882655},
{"learn":[0.07230257433],"iteration":138,"passed_time":0.1569321152,"remaining_time":0.9720759081},
{"learn":[0.07225085897],"iteration":139,"passed_time":0.1581380675,"remaining_time":0.9714195573},
{"learn":[0.07217072418],"iteration":140,"passed_time":0.1592740418,"remaining_time":0.9703290915},
{"learn":[0.07207159475],"iteration":141,"passed_time":0.1604075767,"remaining_time":0.9692232452},
{"learn":[0.07199175312],"iteration":142,"passed_time":0.1615159488,"remaining_time":0.9679662109},
{"learn":[0.07184637184],"iteration":143,"passed_time":0.1626645451,"remaining_time":0.9669503516},
{"learn":[0.07178050251],"iteration":144,"passed_time":0.1637299754,"remaining_time":0.9654422688},
{"learn":[0.07162490598],"iteration":145,"passed_time":0.1648309916,"remaining_time":0.9641484028},
{"learn":[0.0714867788],"iteration":146,"passed_time":0.1660151414,"remaining_time":0.9633395619},
{"learn":[0.0713803598],"iteration":147,"passed_time":0.1670859782,"remaining_time":0.9618733341},
{"learn":[0.0712862912],"iteration":148,"passed_time":0.1682114601,"remaining_time":0.9607245135},
{"learn":[0.07119641351],"iteration":149,"passed_time":0.1693246502,"remaining_time":0.9595063509},
{"learn":[0.07109176872],"iteration":150,"passed_time":0.1704312409,"remaining_time":0.9582524735},
{"learn":[0.07098803424],"iteration":151,"passed_time":0.1716721808,"remaining_time":0.9577500612},
{"learn":[0.0708774591],"iteration":152,"passed_time":0.1727124497,"remaining_time":0.9561270908},
{"learn":[0.07075128849],"iteration":153,"passed_time":0.1737573796,"remaining_time":0.9545372934},
{"learn":[0.07064690498],"iteration":154,"passed_time":0.1748158063,"remaining_time":0.9530281051},
{"learn":[0.07055961332],"iteration":155,"passed_time":0.1759324795,"remaining_time":0.9518398251},
{"learn":[0.07047510995],"iteration":156,"passed_time":0.1770589129,"remaining_time":0.9507048636},
{"learn":[0.07040718046],"iteration":157,"passed_time":0.1781795632,"remaining_time":0.9495391915},
{"learn":[0.07035503488],"iteration":158,"passed_time":0.1792306069,"remaining_time":0.9480059143},
{"learn":[0.07033878947],"iteration":159,"passed_time":0.1803140856,"remaining_time":0.9466489494},
{"learn":[0.07020977693],"iteration":160,"passed_time":0.181339338,"remaining_time":0.9449919538},
{"learn":[0.07011059331],"iteration":161,"passed_time":0.182417777,"remaining_time":0.9436178836},
{"learn":[0.07005554013],"iteration":162,"passed_time":0.1835492572,"remaining_time":0.9425198055},
{"learn":[0.06994417976],"iteration":163,"passed_time":0.184703243,"remaining_time":0.9415360435},
{"learn":[0.06982165237],"iteration":164,"passed_time":0.1857871879,"remaining_time":0.9401957691},
{"learn":[0.06970169409],"iteration":165,"passed_time":0.1869218114,"remaining_time":0.939113197},
{"learn":[0.06956146491],"iteration":166,"passed_time":0.1880697903,"remaining_time":0.9380966185},
{"learn":[0.06943595787],"iteration":167,"passed_time":0.1892114544,"remaining_time":0.9370472029},
{"learn":[0.06932713215],"iteration":168,"passed_time":0.1902508913,"remaining_time":0.9354940278},
{"learn":[0.06926235625],"iteration":169,"passed_time":0.1914010328,"remaining_time":0.9344873953},
{"learn":[0.06918194972],"iteration":170,"passed_time":0.1925409963,"remaining_time":0.9334297422},
{"learn":[0.06914834282],"iteration":171,"passed_time":0.1936337757,"remaining_time":0.9321439902},
{"learn":[0.06905506101],"iteration":172,"passed_time":0.1947061823,"remaining_time":0.9307630795},
{"learn":[0.0689495828],"iteration":173,"passed_time":0.1958214236,"remaining_time":0.9295890567},
{"learn":[0.06883819708],"iteration":174,"passed_time":0.196936246,"remaining_time":0.9284137311},
{"learn":[0.0687292749],"iteration":175,"passed_time":0.1980213631,"remaining_time":0.9271000181},
{"learn":[0.06869917562],"iteration":176,"passed_time":0.1992156399,"remaining_time":0.9262964501},
{"learn":[0.06857113617],"iteration":177,"passed_time":0.2003475518,"remaining_time":0.9252004919},
{"learn":[0.06853066896],"iteration":178,"passed_time":0.2015074085,"remaining_time":0.9242323038},
{"learn":[0.06844072759],"iteration":179,"passed_time":0.2026406968,"remaining_time":0.9231409522},
{"learn":[0.06840705288],"iteration":180,"passed_time":0.2037887849,"remaining_time":0.9221161043},
{"learn":[0.06829472981],"iteration":181,"passed_time":0.2048630224,"remaining_time":0.9207579797},
{"learn":[0.06824988231],"iteration":182,"passed_time":0.2060211681,"remaining_time":0.9197775649},
{"learn":[0.06816270697],"iteration":183,"passed_time":0.2071488841,"remaining_time":0.9186602684},
{"learn":[0.06804463358],"iteration":184,"passed_time":0.2082581875,"remaining_time":0.9174617448},
{"learn":[0.06794479904],"iteration":185,"passed_time":0.2093059622,"remaining_time":0.9159949097},
{"learn":[0.06786359331],"iteration":186,"passed_time":0.2103181001,"remaining_time":0.9143776222},
{"learn":[0.06775561095],"iteration":187,"passed_time":0.2114481832,"remaining_time":0.9132761953},
{"learn":[0.06765344089],"iteration":188,"passed_time":0.2125178724,"remaining_time":0.9119153147},
{"learn":[0.06758135377],"iteration":189,"passed_time":0.2136218578,"remaining_time":0.9107037096},
{"learn":[0.06748952648],"iteration":190,"passed_time":0.2147339056,"remaining_time":0.9095273803},
{"learn":[0.0673958693],"iteration":191,"passed_time":0.215856943,"remaining_time":0.9083979687},
{"learn":[0.06730288722],"iteration":192,"passed_time":0.2170076631,"remaining_time":0.9073843737},
{"learn":[0.06720343649],"iteration":193,"passed_time":0.2181368968,"remaining_time":0.9062800968},
{"learn":[0.06713914764],"iteration":194,"passed_time":0.2192942849,"remaining_time":0.9052917915},
{"learn":[0.06704147945],"iteration":195,"passed_time":0.2204064882,"remaining_time":0.9041164108},
{"learn":[0.06696258341],"iteration":196,"passed_time":0.2214912402,"remaining_time":0.9028297761},
{"learn":[0.06690481521],"iteration":197,"passed_time":0.2226588774,"remaining_time":0.9018809076},
{"learn":[0.06683505377],"iteration":198,"passed_time":0.2237699886,"remaining_time":0.900702316},
{"learn":[0.0667784863],"iteration":199,"passed_time":0.2249045192,"remaining_time":0.8996180769},
{"learn":[0.06673936651],"iteration":200,"passed_time":0.2260923664,"remaining_time":0.8987452774},
{"learn":[0.06666677002],"iteration":201,"passed_time":0.2272134932,"remaining_time":0.8976057802},
{"learn":[0.06656692084],"iteration":202,"passed_time":0.2283812746,"remaining_time":0.8966496347},
{"learn":[0.06646586866],"iteration":203,"passed_time":0.2294773226,"remaining_time":0.8954115137},
{"learn":[0.06639012774],"iteration":204,"passed_time":0.2306145154,"remaining_time":0.8943343403},
{"learn":[0.06629980314],"iteration":205,"passed_time":0.2318024807,"remaining_time":0.8934522801},
{"learn":[0.06623695397],"iteration":206,"passed_time":0.232979798,"remaining_time":0.8925264727},
{"learn":[0.06614833052],"iteration":207,"passed_time":0.2340877873,"remaining_time":0.8913342669},
{"learn":[0.06611926868],"iteration":208,"passed_time":0.2352391187,"remaining_time":0.8903069038},
{"learn":[0.06603393382],"iteration":209,"passed_time":0.2363135565,"remaining_time":0.8889890934},
{"learn":[0.06593194447],"iteration":210,"passed_time":0.2374448876,"remaining_time":0.8878863331},
{"learn":[0.06583738886],"iteration":211,"passed_time":0.2384734587,"remaining_time":0.8864013464},
{"learn":[0.06575186755],"iteration":212,"passed_time":0.2395119483,"remaining_time":0.8849572925},
{"learn":[0.06570512504],"iteration":213,"passed_time":0.2405371352,"remaining_time":0.8834681695},
{"learn":[0.06563020344],"iteration":214,"passed_time":0.2416429903,"remaining_time":0.882277895},
{"learn":[0.06555222048],"iteration":215,"passed_time":0.2427642246,"remaining_time":0.8811442228},
{"learn":[0.06548567169],"iteration":216,"passed_time":0.2439223992,"remaining_time":0.8801439567},
{"learn":[0.0654224923],"iteration":217,"passed_time":0.2450243292,"remaining_time":0.8789404838},
{"learn":[0.0653819596],"iteration":218,"passed_time":0.2461269425,"remaining_time":0.8777403749},
{"learn":[0.06530917557],"iteration":219,"passed_time":0.2472359947,"remaining_time":0.8765639812},
{"learn":[0.06523862764],"iteration":220,"passed_time":0.2483523299,"remaining_time":0.8754138687},
{"learn":[0.06519252689],"iteration":221,"passed_time":0.2494208202,"remaining_time":0.8740963879},
{"learn":[0.06511259265],"iteration":222,"passed_time":0.2505252576,"remaining_time":0.8729063908},
{"learn":[0.06505532183],"iteration":223,"passed_time":0.2516927066,"remaining_time":0.8719354478},
{"learn":[0.06501443203],"iteration":224,"passed_time":0.2527731619,"remaining_time":0.8706631133},
{"learn":[0.06495780192],"iteration":225,"passed_time":0.2538840016,"remaining_time":0.8694965364},
{"learn":[0.06489287319],"iteration":226,"passed_time":0.2549505681,"remaining_time":0.8681796879},
{"learn":[0.06481774526],"iteration":227,"passed_time":0.2560483958,"remaining_time":0.866970884},
{"learn":[0.06478879951],"iteration":228,"passed_time":0.2571638869,"remaining_time":0.8658225187},
{"learn":[0.06469288367],"iteration":229,"passed_time":0.2583702515,"remaining_time":0.8649786682},
{"learn":[0.06462023988],"iteration":230,"passed_time":0.2595086108,"remaining_time":0.8639052889},
{"learn":[0.06455049453],"iteration":231,"passed_time":0.2606104861,"remaining_time":0.8627105745},
{"learn":[0.0644636016],"iteration":232,"passed_time":0.2617679002,"remaining_time":0.8616994826},
{"learn":[0.06437288188],"iteration":233,"passed_time":0.2628632778,"remaining_time":0.8604840631},
{"learn":[0.06431911098],"iteration":234,"passed_time":0.2639341541,"remaining_time":0.8591899059},
{"learn":[0.06424936683],"iteration":235,"passed_time":0.2650818351,"remaining_time":0.8581462798},
{"learn":[0.06418371999],"iteration":236,"passed_time":0.2662089265,"remaining_time":0.8570354891},
{"learn":[0.06412103588],"iteration":237,"passed_time":0.2673470648,"remaining_time":0.8559599302},
{"learn":[0.06404117517],"iteration":238,"passed_time":0.268385373,"remaining_time":0.8545659783},
{"learn":[0.06401177802],"iteration":239,"passed_time":0.2694641519,"remaining_time":0.8533031475},
{"learn":[0.06396078974],"iteration":240,"passed_time":0.2706352947,"remaining_time":0.852332733},
{"learn":[0.0639113989],"iteration":241,"passed_time":0.2716975887,"remaining_time":0.8510197201},
{"learn":[0.06384367262],"iteration":242,"passed_time":0.2728473259,"remaining_time":0.8499811758},
{"learn":[0.06376111488],"iteration":243,"passed_time":0.2740081346,"remaining_time":0.8489760235},
{"learn":[0.06370713787],"iteration":244,"passed_time":0.2750693757,"remaining_time":0.84766277},
{"learn":[0.06364330028],"iteration":245,"passed_time":0.2762028633,"remaining_time":0.8465730037},
{"learn":[0.06360358568],"iteration":246,"passed_time":0.2773792568,"remaining_time":0.8456136856},
{"learn":[0.06355197111],"iteration":247,"passed_time":0.2785062499,"remaining_time":0.8445028224},
{"learn":[0.063492282],"iteration":248,"passed_time":0.2796285952,"remaining_time":0.8433778113},
{"learn":[0.06342088713],"iteration":249,"passed_time":0.2807742457,"remaining_time":0.8423227372},
{"learn":[0.06334272782],"iteration":250,"passed_time":0.2818418574,"remaining_time":0.8410340685},
{"learn":[0.06327700216],"iteration":251,"passed_time":0.2829643404,"remaining_time":0.8399100263},
{"learn":[0.06320442537],"iteration":252,"passed_time":0.2840241275,"remaining_time":0.8386008823},
{"learn":[0.06315172203],"iteration":253,"passed_time":0.2850880856,"remaining_time":0.8373059521},
{"learn":[0.06308524062],"iteration":254,"passed_time":0.286220765,"remaining_time":0.8362136076},
{"learn":[0.06304720367],"iteration":255,"passed_time":0.2873313751,"remaining_time":0.835056809},
{"learn":[0.06298503788],"iteration":256,"passed_time":0.2885112112,"remaining_time":0.8341005056},
{"learn":[0.06290172841],"iteration":257,"passed_time":0.2896194068,"remaining_time":0.8329364336},
{"learn":[0.06287287605],"iteration":258,"passed_time":0.2907310162,"remaining_time":0.8317825599},
{"learn":[0.06284563511],"iteration":259,"passed_time":0.2919299523,"remaining_time":0.8308775566},
{"learn":[0.0627902083],"iteration":260,"passed_time":0.2930126749,"remaining_time":0.8296412518},
{"learn":[0.06270549193],"iteration":261,"passed_time":0.2941069155,"remaining_time":0.8284385634},
{"learn":[0.06268125256],"iteration":262,"passed_time":0.2952258687,"remaining_time":0.8273059515},
{"learn":[0.06262602107],"iteration":263,"passed_time":0.2963267425,"remaining_time":0.8261230398},
{"learn":[0.06257048344],"iteration":264,"passed_time":0.2975267366,"remaining_time":0.8252156657},
{"learn":[0.06253544136],"iteration":265,"passed_time":0.2986877773,"remaining_time":0.8241986035},
{"learn":[0.0624560189],"iteration":266,"passed_time":0.2998008332,"remaining_time":0.8230487294},
{"learn":[0.06240219353],"iteration":267,"passed_time":0.3009150781,"remaining_time":0.8219023775},
{"learn":[0.06235657763],"iteration":268,"passed_time":0.3020291924,"remaining_time":0.8207559094},
{"learn":[0.06231299926],"iteration":269,"passed_time":0.3030663564,"remaining_time":0.8194016303},
{"learn":[0.06228902811],"iteration":270,"passed_time":0.3041785078,"remaining_time":0.8182514102},
{"learn":[0.06222695027],"iteration":271,"passed_time":0.3054247838,"remaining_time":0.8174604507},
{"learn":[0.06220377711],"iteration":272,"passed_time":0.3065253085,"remaining_time":0.8162780194},
{"learn":[0.06213011839],"iteration":273,"passed_time":0.3076546966,"remaining_time":0.8151726633},
{"learn":[0.06205852506],"iteration":274,"passed_time":0.3088387731,"remaining_time":0.8142113109},
{"learn":[0.06200683656],"iteration":275,"passed_time":0.3099561424,"remaining_time":0.8130733591},
{"learn":[0.06193935167],"iteration":276,"passed_time":0.3110748715,"remaining_time":0.811939105},
{"learn":[0.06188133289],"iteration":277,"passed_time":0.3122519642,"remaining_time":0.8109565402},
{"learn":[0.06178807417],"iteration":278,"passed_time":0.3133663337,"remaining_time":0.8098104895},
{"learn":[0.06174660787],"iteration":279,"passed_time":0.3144559762,"remaining_time":0.8086010817},
{"learn":[0.06169750262],"iteration":280,"passed_time":0.3155497628,"remaining_time":0.8074031296},
{"learn":[0.06163033387],"iteration":281,"passed_time":0.316689612,"remaining_time":0.8063231966},
{"learn":[0.06158731137],"iteration":282,"passed_time":0.3177827054,"remaining_time":0.8051243808},
{"learn":[0.06152892746],"iteration":283,"passed_time":0.3189529543,"remaining_time":0.8041208283},
{"learn":[0.06147192],"iteration":284,"passed_time":0.3201650322,"remaining_time":0.8032210458},
{"learn":[0.06142287868],"iteration":285,"passed_time":0.3213257217,"remaining_time":0.8021907877},
{"learn":[0.06134871113],"iteration":286,"passed_time":0.3225121945,"remaining_time":0.8012236749},
{"learn":[0.06130411873],"iteration":287,"passed_time":0.3236425769,"remaining_time":0.8001163706},
{"learn":[0.06125339492],"iteration":288,"passed_time":0.3248143115,"remaining_time":0.7991106417},
{"learn":[0.06118188503],"iteration":289,"passed_time":0.3260022192,"remaining_time":0.7981433641},
{"learn":[0.06112443857],"iteration":290,"passed_time":0.327103725,"remaining_time":0.7969640585},
{"learn":[0.06107670024],"iteration":291,"passed_time":0.328262322,"remaining_time":0.7959237122},
{"learn":[0.06101364177],"iteration":292,"passed_time":0.329567304,"remaining_time":0.7952357814},
{"learn":[0.06094963226],"iteration":293,"passed_time":0.330632339,"remaining_time":0.7939674534},
{"learn":[0.06088229021],"iteration":294,"passed_time":0.331818299,"remaining_time":0.7929894943},
{"learn":[0.06082101932],"iteration":295,"passed_time":0.3328536122,"remaining_time":0.7916518345},
{"learn":[0.06075612715],"iteration":296,"passed_time":0.3340175493,"remaining_time":0.7906206637},
{"learn":[0.06069378228],"iteration":297,"passed_time":0.3351466246,"remaining_time":0.789506478},
{"learn":[0.0606344086],"iteration":298,"passed_time":0.336287177,"remaining_time":0.7884191006},
{"learn":[0.06060041731],"iteration":299,"passed_time":0.3373727151,"remaining_time":0.7872030019},
{"learn":[0.06055984757],"iteration":300,"passed_time":0.3384646337,"remaining_time":0.786002588},
{"learn":[0.06050417954],"iteration":301,"passed_time":0.3395824724,"remaining_time":0.7848628005},
{"learn":[0.06046305458],"iteration":302,"passed_time":0.3406926858,"remaining_time":0.7837056171},
{"learn":[0.06042339923],"iteration":303,"passed_time":0.341778068,"remaining_time":0.7824918925},
{"learn":[0.06038414893],"iteration":304,"passed_time":0.3429976215,"remaining_time":0.7815847441},
{"learn":[0.06032371585],"iteration":305,"passed_time":0.3441833872,"remaining_time":0.780598924},
{"learn":[0.06028531968],"iteration":306,"passed_time":0.3453412387,"remaining_time":0.7795487897},
{"learn":[0.06024319979],"iteration":307,"passed_time":0.3464672348,"remaining_time":0.7784263846},
{"learn":[0.06021294263],"iteration":308,"passed_time":0.3475406548,"remaining_time":0.7771863834},
{"learn":[0.06016083523],"iteration":309,"passed_time":0.3487014734,"remaining_time":0.7761419892},
{"learn":[0.06013157058],"iteration":310,"passed_time":0.3499506173,"remaining_time":0.7752925251},
{"learn":[0.06008657151],"iteration":311,"passed_time":0.3510580371,"remaining_time":0.7741279793},
{"learn":[0.06004536618],"iteration":312,"passed_time":0.3521205184,"remaining_time":0.7728651634},
{"learn":[0.06000717474],"iteration":313,"passed_time":0.3532380514,"remaining_time":0.7717238958},
{"learn":[0.05997655225],"iteration":314,"passed_time":0.3543930824,"remaining_time":0.770664322},
{"learn":[0.05993263873],"iteration":315,"passed_time":0.3555136057,"remaining_time":0.7695294502},
{"learn":[0.05987336027],"iteration":316,"passed_time":0.3566589152,"remaining_time":0.7684480729},
{"learn":[0.05983084147],"iteration":317,"passed_time":0.3577720505,"remaining_time":0.7672972908},
{"learn":[0.05980133657],"iteration":318,"passed_time":0.358974852,"remaining_time":0.7663381636},
{"learn":[0.05977175971],"iteration":319,"passed_time":0.3600668425,"remaining_time":0.7651420403},
{"learn":[0.05974352719],"iteration":320,"passed_time":0.3612406005,"remaining_time":0.7641195257},
{"learn":[0.05970934033],"iteration":321,"passed_time":0.3624796426,"remaining_time":0.7632335332},
{"learn":[0.05966119856],"iteration":322,"passed_time":0.3635983539,"remaining_time":0.7620931442},
{"learn":[0.05963260188],"iteration":323,"passed_time":0.3648366522,"remaining_time":0.7612023979},
{"learn":[0.05959957718],"iteration":324,"passed_time":0.3659433038,"remaining_time":0.7600360925},
{"learn":[0.0595676946],"iteration":325,"passed_time":0.3670247456,"remaining_time":0.7588180323},
{"learn":[0.05948929965],"iteration":326,"passed_time":0.368164855,"remaining_time":0.7577215517},
{"learn":[0.05944967222],"iteration":327,"passed_time":0.3692524667,"remaining_time":0.7565172488},
{"learn":[0.05939796683],"iteration":328,"passed_time":0.3703711117,"remaining_time":0.7553769483},
{"learn":[0.05935859012],"iteration":329,"passed_time":0.3714542311,"remaining_time":0.7541646509},
{"learn":[0.0593099413],"iteration":330,"passed_time":0.3726104292,"remaining_time":0.7531008373},
{"learn":[0.05926413151],"iteration":331,"passed_time":0.3736989579,"remaining_time":0.751900313},
{"learn":[0.05921250582],"iteration":332,"passed_time":0.3748022335,"remaining_time":0.7507299991},
{"learn":[0.0591740177],"iteration":333,"passed_time":0.3758631852,"remaining_time":0.7494756927},
{"learn":[0.05912573474],"iteration":334,"passed_time":0.3769569042,"remaining_time":0.7482875859},
{"learn":[0.05909094261],"iteration":335,"passed_time":0.3780959022,"remaining_time":0.7471895211},
{"learn":[0.05906318815],"iteration":336,"passed_time":0.3793001147,"remaining_time":0.7462195134},
{"learn":[0.05903582828],"iteration":337,"passed_time":0.3803688598,"remaining_time":0.7449827963},
{"learn":[0.05900903992],"iteration":338,"passed_time":0.3815603274,"remaining_time":0.7439863612},
{"learn":[0.0589334691],"iteration":339,"passed_time":0.3826764281,"remaining_time":0.7428424781},
{"learn":[0.0588969482],"iteration":340,"passed_time":0.3837723114,"remaining_time":0.7416596868},
{"learn":[0.05886170319],"iteration":341,"passed_time":0.384828631,"remaining_time":0.7404012841},
{"learn":[0.05882768617],"iteration":342,"passed_time":0.385908392,"remaining_time":0.7391889608},
{"learn":[0.05878055577],"iteration":343,"passed_time":0.3871063424,"remaining_time":0.7382027925},
{"learn":[0.05875722932],"iteration":344,"passed_time":0.3881969469,"remaining_time":0.7370115948},
{"learn":[0.05871226529],"iteration":345,"passed_time":0.3893711383,"remaining_time":0.7359789724},
{"learn":[0.05867930551],"iteration":346,"passed_time":0.3904741729,"remaining_time":0.734811628},
{"learn":[0.05862267262],"iteration":347,"passed_time":0.3915320625,"remaining_time":0.7335600712},
{"learn":[0.05858667447],"iteration":348,"passed_time":0.3926789731,"remaining_time":0.7324756777},
{"learn":[0.0585165601],"iteration":349,"passed_time":0.3938825119,"remaining_time":0.7314960935},
{"learn":[0.05849383796],"iteration":350,"passed_time":0.3950886257,"remaining_time":0.7305199945},
{"learn":[0.05842268957],"iteration":351,"passed_time":0.3961926542,"remaining_time":0.7293546588},
{"learn":[0.05837886592],"iteration":352,"passed_time":0.3972839618,"remaining_time":0.7281663549},
{"learn":[0.05834686688],"iteration":353,"passed_time":0.3983767573,"remaining_time":0.7269813142},
{"learn":[0.05832070484],"iteration":354,"passed_time":0.3994235858,"remaining_time":0.7257132755},
{"learn":[0.05826754507],"iteration":355,"passed_time":0.4005114177,"remaining_time":0.7245206545},
{"learn":[0.058192672],"iteration":356,"passed_time":0.4015842417,"remaining_time":0.7233015893},
{"learn":[0.05816517132],"iteration":357,"passed_time":0.4026761276,"remaining_time":0.7221175249},
{"learn":[0.0581385265],"iteration":358,"passed_time":0.4037412486,"remaining_time":0.7208861848},
{"learn":[0.05808953698],"iteration":359,"passed_time":0.404858704,"remaining_time":0.7197488072},
{"learn":[0.05804870012],"iteration":360,"passed_time":0.4059820447,"remaining_time":0.7186219572},
{"learn":[0.05796623229],"iteration":361,"passed_time":0.4071293524,"remaining_time":0.7175373669},
{"learn":[0.05792499328],"iteration":362,"passed_time":0.4082961623,"remaining_time":0.7164866539},
{"learn":[0.05788445054],"iteration":363,"passed_time":0.4094836795,"remaining_time":0.715471484},
{"learn":[0.05781702758],"iteration":364,"passed_time":0.4105508898,"remaining_time":0.7142460686},
{"learn":[0.05775467173],"iteration":365,"passed_time":0.4116725896,"remaining_time":0.7131159066},
{"learn":[0.05767061235],"iteration":366,"passed_time":0.4128140933,"remaining_time":0.7120199483},
{"learn":[0.0576086508],"iteration":367,"passed_time":0.4139337091,"remaining_time":0.7108861526},
{"learn":[0.05754986946],"iteration":368,"passed_time":0.4152033426,"remaining_time":0.710008968},
{"learn":[0.05748264121],"iteration":369,"passed_time":0.4163460915,"remaining_time":0.7089136152},
{"learn":[0.05742755808],"iteration":370,"passed_time":0.41743536,"remaining_time":0.7077273354},
{"learn":[0.05737380118],"iteration":371,"passed_time":0.4185619831,"remaining_time":0.7066046381},
{"learn":[0.05732165607],"iteration":372,"passed_time":0.4197505519,"remaining_time":0.7055860484},
{"learn":[0.05728366674],"iteration":373,"passed_time":0.4208807197,"remaining_time":0.7044687982},
{"learn":[0.05721670406],"iteration":374,"passed_time":0.4220261823,"remaining_time":0.7033769705},
{"learn":[0.05718669562],"iteration":375,"passed_time":0.4231288778,"remaining_time":0.7022138823},
{"learn":[0.0571637167],"iteration":376,"passed_time":0.4244219564,"remaining_time":0.7013657263},
{"learn":[0.05711845564],"iteration":377,"passed_time":0.425554134,"remaining_time":0.7002504534},
{"learn":[0.0570521628],"iteration":378,"passed_time":0.4266858975,"remaining_time":0.6991344125},
{"learn":[0.05700310341],"iteration":379,"passed_time":0.4278611412,"remaining_time":0.6980892304},
{"learn":[0.05698225953],"iteration":380,"passed_time":0.4289664348,"remaining_time":0.6969297195},
{"learn":[0.0569311618],"iteration":381,"passed_time":0.4301126799,"remaining_time":0.695836744},
{"learn":[0.05686894086],"iteration":382,"passed_time":0.4312388831,"remaining_time":0.6947112033},
{"learn":[0.05682253351],"iteration":383,"passed_time":0.4323714092,"remaining_time":0.6935958022},
{"learn":[0.05677412709],"iteration":384,"passed_time":0.4334712179,"remaining_time":0.6924280494},
{"learn":[0.05671880777],"iteration":385,"passed_time":0.4345472617,"remaining_time":0.6912228463},
{"learn":[0.0567022711],"iteration":386,"passed_time":0.4356397173,"remaining_time":0.6900443067},
{"learn":[0.05667157184],"iteration":387,"passed_time":0.4367640397,"remaining_time":0.688916475},
{"learn":[0.05661847972],"iteration":388,"passed_time":0.4379200254,"remaining_time":0.6878383947},
{"learn":[0.05657499345],"iteration":389,"passed_time":0.4390873253,"remaining_time":0.6867776114},
{"learn":[0.05652887885],"iteration":390,"passed_time":0.4402142242,"remaining_time":0.6856533568},
{"learn":[0.05649981209],"iteration":391,"passed_time":0.4413471645,"remaining_time":0.6845384592},
{"learn":[0.05646781524],"iteration":392,"passed_time":0.4424462907,"remaining_time":0.6833712428},
{"learn":[0.05642091602],"iteration":393,"passed_time":0.4435480762,"remaining_time":0.6822084624},
{"learn":[0.05637667477],"iteration":394,"passed_time":0.4446324734,"remaining_time":0.681019358},
{"learn":[0.05633185007],"iteration":395,"passed_time":0.4457451771,"remaining_time":0.6798739569},
{"learn":[0.05626845363],"iteration":396,"passed_time":0.4468109974,"remaining_time":0.6786575098},
{"learn":[0.05623295471],"iteration":397,"passed_time":0.4479125046,"remaining_time":0.6774957984},
{"learn":[0.05620502812],"iteration":398,"passed_time":0.4490122368,"remaining_time":0.6763317151},
{"learn":[0.0561780337],"iteration":399,"passed_time":0.4501029182,"remaining_time":0.6751543772},
{"learn":[0.05614179057],"iteration":400,"passed_time":0.4512090035,"remaining_time":0.6740004816},
{"learn":[0.05608377234],"iteration":401,"passed_time":0.4523282874,"remaining_time":0.6728664573},
{"learn":[0.056056743],"iteration":402,"passed_time":0.4534590302,"remaining_time":0.6717494815},
{"learn":[0.05602713807],"iteration":403,"passed_time":0.4546129509,"remaining_time":0.6706666305},
{"learn":[0.05597161087],"iteration":404,"passed_time":0.4557131464,"remaining_time":0.6695044991},
{"learn":[0.05590425916],"iteration":405,"passed_time":0.4568567764,"remaining_time":0.6684062196},
{"learn":[0.05587899311],"iteration":406,"passed_time":0.4579781825,"remaining_time":0.6672753372},
{"learn":[0.05584219619],"iteration":407,"passed_time":0.4591316157,"remaining_time":0.6661909718},
{"learn":[0.05580750835],"iteration":408,"passed_time":0.4602525631,"remaining_time":0.6650593272},
{"learn":[0.05574861471],"iteration":409,"passed_time":0.4613536142,"remaining_time":0.6638991033},
{"learn":[0.05570531356],"iteration":410,"passed_time":0.462396172,"remaining_time":0.6626553414},
{"learn":[0.05568008721],"iteration":411,"passed_time":0.4635375166,"remaining_time":0.6615535431},
{"learn":[0.0556498927],"iteration":412,"passed_time":0.4646078855,"remaining_time":0.660350675},
{"learn":[0.05563280496],"iteration":413,"passed_time":0.4657083931,"remaining_time":0.6591911072},
{"learn":[0.05560815826],"iteration":414,"passed_time":0.4668335953,"remaining_time":0.6580666343},
{"learn":[0.05556134435],"iteration":415,"passed_time":0.4679525097,"remaining_time":0.6569333309},
{"learn":[0.05553537642],"iteration":416,"passed_time":0.469037799,"remaining_time":0.655753086},
{"learn":[0.05548025926],"iteration":417,"passed_time":0.4701936235,"remaining_time":0.6546715046},
{"learn":[0.05544445929],"iteration":418,"passed_time":0.4714500953,"remaining_time":0.6537291297},
{"learn":[0.05537612403],"iteration":419,"passed_time":0.4726919476,"remaining_time":0.6527650705},
{"learn":[0.05533415698],"iteration":420,"passed_time":0.4739023367,"remaining_time":0.6517564203},
{"learn":[0.05527055426],"iteration":421,"passed_time":0.4750342645,"remaining_time":0.6506393481},
{"learn":[0.05524190754],"iteration":422,"passed_time":0.4761668472,"remaining_time":0.6495230988},
{"learn":[0.0552100861],"iteration":423,"passed_time":0.4772421027,"remaining_time":0.6483288942},
{"learn":[0.05515736399],"iteration":424,"passed_time":0.4783616538,"remaining_time":0.6471951787},
{"learn":[0.05510316002],"iteration":425,"passed_time":0.4794257581,"remaining_time":0.6459868196},
{"learn":[0.05506501574],"iteration":426,"passed_time":0.4805825947,"remaining_time":0.6449035756},
{"learn":[0.0549934467],"iteration":427,"passed_time":0.4817227422,"remaining_time":0.6437976835},
{"learn":[0.05497778474],"iteration":428,"passed_time":0.4828413737,"remaining_time":0.6426629939},
{"learn":[0.05495011465],"iteration":429,"passed_time":0.4839659179,"remaining_time":0.6415362167},
{"learn":[0.05491822731],"iteration":430,"passed_time":0.4850867696,"remaining_time":0.6404045752},
{"learn":[0.05487901793],"iteration":431,"passed_time":0.4862210234,"remaining_time":0.6392906048},
{"learn":[0.05485247447],"iteration":432,"passed_time":0.4872992187,"remaining_time":0.6381031339},
{"learn":[0.05482042453],"iteration":433,"passed_time":0.4884025504,"remaining_time":0.6369489482},
{"learn":[0.05478619582],"iteration":434,"passed_time":0.4894430339,"remaining_time":0.6357133659},
{"learn":[0.05475667458],"iteration":435,"passed_time":0.4905259326,"remaining_time":0.6345335458},
{"learn":[0.05470705862],"iteration":436,"passed_time":0.4916347485,"remaining_time":0.6333875593},
{"learn":[0.05466457891],"iteration":437,"passed_time":0.4927566803,"remaining_time":0.6322585715},
{"learn":[0.05463794859],"iteration":438,"passed_time":0.4939102725,"remaining_time":0.6311700748},
{"learn":[0.054601151],"iteration":439,"passed_time":0.4950936436,"remaining_time":0.6301191828},
{"learn":[0.05456267133],"iteration":440,"passed_time":0.4962260355,"remaining_time":0.62900307},
{"learn":[0.05453450513],"iteration":441,"passed_time":0.4973337177,"remaining_time":0.6278556888},
{"learn":[0.05450339784],"iteration":442,"passed_time":0.4986635113,"remaining_time":0.6269877557},
{"learn":[0.05444698872],"iteration":443,"passed_time":0.499794231,"remaining_time":0.6258684514},
{"learn":[0.05440289405],"iteration":444,"passed_time":0.5009254212,"remaining_time":0.6247496826},
{"learn":[0.05435331008],"iteration":445,"passed_time":0.5020843484,"remaining_time":0.6236653117},
{"learn":[0.05432216091],"iteration":446,"passed_time":0.5031567435,"remaining_time":0.6224735552},
{"learn":[0.05429223652],"iteration":447,"passed_time":0.5043043182,"remaining_time":0.6213749634},
{"learn":[0.0542574428],"iteration":448,"passed_time":0.5054628016,"remaining_time":0.6202895405},
{"learn":[0.05422342009],"iteration":449,"passed_time":0.5065770728,"remaining_time":0.6191497557},
{"learn":[0.05418132901],"iteration":450,"passed_time":0.5076665578,"remaining_time":0.6179799118},
{"learn":[0.05414570345],"iteration":451,"passed_time":0.5087705838,"remaining_time":0.6168280529},
{"learn":[0.05412054612],"iteration":452,"passed_time":0.509927473,"remaining_time":0.6157402378},
{"learn":[0.05409458146],"iteration":453,"passed_time":0.5109688867,"remaining_time":0.6145132426},
{"learn":[0.05405529984],"iteration":454,"passed_time":0.5121150571,"remaining_time":0.613412541},
{"learn":[0.05403053006],"iteration":455,"passed_time":0.5131927464,"remaining_time":0.6122299431},
{"learn":[0.05398300394],"iteration":456,"passed_time":0.5143075101,"remaining_time":0.6110918556},
{"learn":[0.05393454163],"iteration":457,"passed_time":0.5154262651,"remaining_time":0.6099585932},
{"learn":[0.05390897771],"iteration":458,"passed_time":0.5165394186,"remaining_time":0.6088187918},
{"learn":[0.0538847537],"iteration":459,"passed_time":0.5176175178,"remaining_time":0.6076379557},
{"learn":[0.05386021513],"iteration":460,"passed_time":0.5187013282,"remaining_time":0.6064642427},
{"learn":[0.05383632978],"iteration":461,"passed_time":0.5197603167,"remaining_time":0.6052620138},
{"learn":[0.05379124587],"iteration":462,"passed_time":0.5208891272,"remaining_time":0.6041413852},
{"learn":[0.05374598193],"iteration":463,"passed_time":0.5219541846,"remaining_time":0.6029470753},
{"learn":[0.05371901864],"iteration":464,"passed_time":0.5230270577,"remaining_time":0.6017623136},
{"learn":[0.05370411935],"iteration":465,"passed_time":0.5241844913,"remaining_time":0.6006749321},
{"learn":[0.05366838457],"iteration":466,"passed_time":0.5253231083,"remaining_time":0.5995657746},
{"learn":[0.05365479959],"iteration":467,"passed_time":0.5263773183,"remaining_time":0.5983605413},
{"learn":[0.05363104746],"iteration":468,"passed_time":0.5274610366,"remaining_time":0.5971893612},
{"learn":[0.0536078883],"iteration":469,"passed_time":0.5286177728,"remaining_time":0.5961008927},
{"learn":[0.05357575209],"iteration":470,"passed_time":0.5298517766,"remaining_time":0.5950989168},
{"learn":[0.05354779953],"iteration":471,"passed_time":0.5309176759,"remaining_time":0.5939079087},
{"learn":[0.05347677186],"iteration":472,"passed_time":0.5320494767,"remaining_time":0.5927908546},
{"learn":[0.05345638105],"iteration":473,"passed_time":0.533138856,"remaining_time":0.591626663},
{"learn":[0.05344159334],"iteration":474,"passed_time":0.5341991903,"remaining_time":0.5904306841},
{"learn":[0.05342214405],"iteration":475,"passed_time":0.5352662515,"remaining_time":0.5892426803},
{"learn":[0.05336880018],"iteration":476,"passed_time":0.5363111395,"remaining_time":0.588030872},
{"learn":[0.05335458429],"iteration":477,"passed_time":0.5373598579,"remaining_time":0.5868239453},
{"learn":[0.05333205674],"iteration":478,"passed_time":0.5385076418,"remaining_time":0.5857254308},
{"learn":[0.05331345108],"iteration":479,"passed_time":0.5395817212,"remaining_time":0.5845468647},
{"learn":[0.05329979624],"iteration":480,"passed_time":0.5406605944,"remaining_time":0.5833739054},
{"learn":[0.05327821941],"iteration":481,"passed_time":0.5417487673,"remaining_time":0.5822113308},
{"learn":[0.05324539888],"iteration":482,"passed_time":0.5428830983,"remaining_time":0.5810984716},
{"learn":[0.05323211103],"iteration":483,"passed_time":0.5440256005,"remaining_time":0.5799942352},
{"learn":[0.05316266321],"iteration":484,"passed_time":0.5450679465,"remaining_time":0.5787834896},
{"learn":[0.05312586054],"iteration":485,"passed_time":0.5461610384,"remaining_time":0.5776271065},
{"learn":[0.0530812739],"iteration":486,"passed_time":0.5472415304,"remaining_time":0.5764577107},
{"learn":[0.05304540022],"iteration":487,"passed_time":0.5483745458,"remaining_time":0.5753437858},
{"learn":[0.05299832621],"iteration":488,"passed_time":0.5494659424,"remaining_time":0.5741862916},
{"learn":[0.05297130394],"iteration":489,"passed_time":0.550601384,"remaining_time":0.5730749099},
{"learn":[0.05294043457],"iteration":490,"passed_time":0.5516960353,"remaining_time":0.5719211445},
{"learn":[0.0529086768],"iteration":491,"passed_time":0.5528174023,"remaining_time":0.570795204},
{"learn":[0.05288066682],"iteration":492,"passed_time":0.553934403,"remaining_time":0.5696647917},
{"learn":[0.05280223529],"iteration":493,"passed_time":0.5550520374,"remaining_time":0.5685350828},
{"learn":[0.05277310598],"iteration":494,"passed_time":0.5561743336,"remaining_time":0.5674101787},
{"learn":[0.05274248466],"iteration":495,"passed_time":0.5573064266,"remaining_time":0.5662952399},
{"learn":[0.05272228753],"iteration":496,"passed_time":0.5584355307,"remaining_time":0.5651772071},
{"learn":[0.05267454],"iteration":497,"passed_time":0.5595131997,"remaining_time":0.5640072816},
{"learn":[0.05263022826],"iteration":498,"passed_time":0.5605927625,"remaining_time":0.5628396273},
{"learn":[0.05261091754],"iteration":499,"passed_time":0.5616851441,"remaining_time":0.5616851441},
{"learn":[0.05257424505],"iteration":500,"passed_time":0.5627858411,"remaining_time":0.560539191},
{"learn":[0.05254810234],"iteration":501,"passed_time":0.5639224542,"remaining_time":0.5594290482},
{"learn":[0.05250291159],"iteration":502,"passed_time":0.5650124046,"remaining_time":0.558272694},
{"learn":[0.05246940214],"iteration":503,"passed_time":0.5661589372,"remaining_time":0.5571722874},
{"learn":[0.05245089463],"iteration":504,"passed_time":0.5673101765,"remaining_time":0.5560763116},
{"learn":[0.05240317629],"iteration":505,"passed_time":0.5684735765,"remaining_time":0.5549919897},
{"learn":[0.052369071],"iteration":506,"passed_time":0.5696334706,"remaining_time":0.5539039468},
{"learn":[0.05233408997],"iteration":507,"passed_time":0.570787787,"remaining_time":0.5528102189},
{"learn":[0.05230323226],"iteration":508,"passed_time":0.5719121404,"remaining_time":0.5516873496},
{"learn":[0.05226220139],"iteration":509,"passed_time":0.5729863867,"remaining_time":0.5505163323},
{"learn":[0.0522416407],"iteration":510,"passed_time":0.5742140033,"remaining_time":0.549492461},
{"learn":[0.05222178926],"iteration":511,"passed_time":0.575397773,"remaining_time":0.5484260024},
{"learn":[0.05217338387],"iteration":512,"passed_time":0.5764762163,"remaining_time":0.5472590982},
{"learn":[0.05215268253],"iteration":513,"passed_time":0.5776026259,"remaining_time":0.5461378914},
{"learn":[0.05212446682],"iteration":514,"passed_time":0.5787251576,"remaining_time":0.5450130125},
{"learn":[0.05209976028],"iteration":515,"passed_time":0.5798888367,"remaining_time":0.5439267383},
{"learn":[0.05207227679],"iteration":516,"passed_time":0.5809597778,"remaining_time":0.5427535255},
{"learn":[0.05203902264],"iteration":517,"passed_time":0.5820844522,"remaining_time":0.5416307065},
{"learn":[0.05200080901],"iteration":518,"passed_time":0.5832193176,"remaining_time":0.5405173252},
{"learn":[0.05195987036],"iteration":519,"passed_time":0.5842966496,"remaining_time":0.5393507535},
{"learn":[0.05189872453],"iteration":520,"passed_time":0.5854035015,"remaining_time":0.5382116645},
{"learn":[0.05187456804],"iteration":521,"passed_time":0.586608078,"remaining_time":0.5371621863},
{"learn":[0.0518424625],"iteration":522,"passed_time":0.5876908937,"remaining_time":0.5360010637},
{"learn":[0.05182260323],"iteration":523,"passed_time":0.5888068475,"remaining_time":0.5348703423},
{"learn":[0.05180385102],"iteration":524,"passed_time":0.5899348843,"remaining_time":0.5337506096},
{"learn":[0.05178247935],"iteration":525,"passed_time":0.5910104456,"remaining_time":0.5325835574},
{"learn":[0.05172503482],"iteration":526,"passed_time":0.5921762466,"remaining_time":0.5314978456},
{"learn":[0.05168601846],"iteration":527,"passed_time":0.5933429134,"remaining_time":0.5304126044},
{"learn":[0.051652093],"iteration":528,"passed_time":0.5944702902,"remaining_time":0.5292920731},
{"learn":[0.05160675853],"iteration":529,"passed_time":0.59556149,"remaining_time":0.5281394345},
{"learn":[0.0515633798],"iteration":530,"passed_time":0.5967531694,"remaining_time":0.5270757748},
{"learn":[0.05154622666],"iteration":531,"passed_time":0.5978717614,"remaining_time":0.525947339},
{"learn":[0.05151399665],"iteration":532,"passed_time":0.5990239448,"remaining_time":0.5248483719},
{"learn":[0.05148163248],"iteration":533,"passed_time":0.6001576416,"remaining_time":0.523733073},
{"learn":[0.05146974019],"iteration":534,"passed_time":0.6012848956,"remaining_time":0.5226121055},
{"learn":[0.05142947581],"iteration":535,"passed_time":0.602382313,"remaining_time":0.5214652859},
{"learn":[0.05141114663],"iteration":536,"passed_time":0.6034996311,"remaining_time":0.5203358085},
{"learn":[0.05138492558],"iteration":537,"passed_time":0.6047816613,"remaining_time":0.5193478207},
{"learn":[0.05131187932],"iteration":538,"passed_time":0.6060372644,"remaining_time":0.5183361389},
{"learn":[0.05130031152],"iteration":539,"passed_time":0.6072474897,"remaining_time":0.5172848987},
{"learn":[0.05128251251],"iteration":540,"passed_time":0.6083689422,"remaining_time":0.5161577532},
{"learn":[0.05124862522],"iteration":541,"passed_time":0.6095439745,"remaining_time":0.5150759047},
{"learn":[0.05123064838],"iteration":542,"passed_time":0.6106001308,"remaining_time":0.5138936644},
{"learn":[0.05121330323],"iteration":543,"passed_time":0.6117423547,"remaining_time":0.5127840326},
{"learn":[0.05119757858],"iteration":544,"passed_time":0.6128471476,"remaining_time":0.5116430315},
{"learn":[0.05118086755],"iteration":545,"passed_time":0.6139348062,"remaining_time":0.5104879158},
{"learn":[0.05115592676],"iteration":546,"passed_time":0.6151020385,"remaining_time":0.509398946},
{"learn":[0.05111108194],"iteration":547,"passed_time":0.6161528618,"remaining_time":0.5082136744},
{"learn":[0.05106862787],"iteration":548,"passed_time":0.6172003316,"remaining_time":0.5070261376},
{"learn":[0.0510511961],"iteration":549,"passed_time":0.6182281746,"remaining_time":0.5058230519},
{"learn":[0.05103509025],"iteration":550,"passed_time":0.6193727781,"remaining_time":0.5047157484},
{"learn":[0.05099885242],"iteration":551,"passed_time":0.6204408194,"remaining_time":0.5035461722},
{"learn":[0.05098379059],"iteration":552,"passed_time":0.621574856,"remaining_time":0.5024303086},
{"learn":[0.05095861523],"iteration":553,"passed_time":0.622763595,"remaining_time":0.5013584176},
{"learn":[0.05092860632],"iteration":554,"passed_time":0.6238596971,"remaining_time":0.5002118292},
{"learn":[0.05089144134],"iteration":555,"passed_time":0.6250399659,"remaining_time":0.4991326347},
{"learn":[0.05086161462],"iteration":556,"passed_time":0.6261726471,"remaining_time":0.4980152292},
{"learn":[0.05083269047],"iteration":557,"passed_time":0.6272751266,"remaining_time":0.4968738458},
{"learn":[0.05081574245],"iteration":558,"passed_time":0.6283624586,"remaining_time":0.4957206516},
{"learn":[0.0507840014],"iteration":559,"passed_time":0.6294137993,"remaining_time":0.4945394138},
{"learn":[0.05076708548],"iteration":560,"passed_time":0.6305098345,"remaining_time":0.4933936138},
{"learn":[0.05074324313],"iteration":561,"passed_time":0.6316684675,"remaining_time":0.4922967771},
{"learn":[0.05072794106],"iteration":562,"passed_time":0.6328127806,"remaining_time":0.4911886059},
{"learn":[0.05069280572],"iteration":563,"passed_time":0.6340323712,"remaining_time":0.4901384997},
{"learn":[0.05066895545],"iteration":564,"passed_time":0.6351824133,"remaining_time":0.4890342474},
{"learn":[0.05062914781],"iteration":565,"passed_time":0.6363522618,"remaining_time":0.4879450206},
{"learn":[0.05057548711],"iteration":566,"passed_time":0.6374528165,"remaining_time":0.4868025918},
{"learn":[0.05054120645],"iteration":567,"passed_time":0.6386248201,"remaining_time":0.4857146519},
{"learn":[0.0505207669],"iteration":568,"passed_time":0.6397194112,"remaining_time":0.484567779},
{"learn":[0.05050509257],"iteration":569,"passed_time":0.6408710761,"remaining_time":0.4834641451},
{"learn":[0.0504912546],"iteration":570,"passed_time":0.6420225246,"remaining_time":0.4823601805},
{"learn":[0.05047676852],"iteration":571,"passed_time":0.6431936332,"remaining_time":0.4812707605},
{"learn":[0.05044969849],"iteration":572,"passed_time":0.6443072995,"remaining_time":0.4801382493},
{"learn":[0.05041880655],"iteration":573,"passed_time":0.6454205245,"remaining_time":0.4790054763},
{"learn":[0.05040396898],"iteration":574,"passed_time":0.6464992913,"remaining_time":0.4778473022},
{"learn":[0.05039442234],"iteration":575,"passed_time":0.6476052382,"remaining_time":0.4767094115},
{"learn":[0.05037351687],"iteration":576,"passed_time":0.6487537733,"remaining_time":0.4756028529},
{"learn":[0.05034672275],"iteration":577,"passed_time":0.6498225458,"remaining_time":0.4744379141},
{"learn":[0.05029519314],"iteration":578,"passed_time":0.6508713482,"remaining_time":0.4732587869},
{"learn":[0.05024571568],"iteration":579,"passed_time":0.6519408563,"remaining_time":0.4720951028},
{"learn":[0.05022623046],"iteration":580,"passed_time":0.6530320006,"remaining_time":0.4709473464},
{"learn":[0.05021226856],"iteration":581,"passed_time":0.6541694183,"remaining_time":0.4698330186},
{"learn":[0.05019201266],"iteration":582,"passed_time":0.655285162,"remaining_time":0.468703109},
{"learn":[0.05016742651],"iteration":583,"passed_time":0.6564193304,"remaining_time":0.4675863723},
{"learn":[0.050154573],"iteration":584,"passed_time":0.6574737753,"remaining_time":0.4664130201},
{"learn":[0.0501375031],"iteration":585,"passed_time":0.6586518267,"remaining_time":0.4653273998},
{"learn":[0.05012437702],"iteration":586,"passed_time":0.6597833681,"remaining_time":0.4642087411},
{"learn":[0.05009352592],"iteration":587,"passed_time":0.6609061967,"remaining_time":0.4630839337},
{"learn":[0.05007509722],"iteration":588,"passed_time":0.6619897701,"remaining_time":0.4619317411},
{"learn":[0.05005918981],"iteration":589,"passed_time":0.663148377,"remaining_time":0.460831923},
{"learn":[0.05004707025],"iteration":590,"passed_time":0.6643257683,"remaining_time":0.4597449057},
{"learn":[0.05003852008],"iteration":591,"passed_time":0.6654795424,"remaining_time":0.4586413062},
{"learn":[0.05000498489],"iteration":592,"passed_time":0.666611114,"remaining_time":0.4575222992},
{"learn":[0.04995569866],"iteration":593,"passed_time":0.6676725491,"remaining_time":0.4563553113},
{"learn":[0.04992577361],"iteration":594,"passed_time":0.6687705163,"remaining_time":0.4552135447},
{"learn":[0.04989640768],"iteration":595,"passed_time":0.6698391727,"remaining_time":0.4540520567},
{"learn":[0.04986062562],"iteration":596,"passed_time":0.6709476591,"remaining_time":0.4529177665},
{"learn":[0.04982529354],"iteration":597,"passed_time":0.6721197759,"remaining_time":0.4518263376},
{"learn":[0.04977953539],"iteration":598,"passed_time":0.6732155706,"remaining_time":0.4506835456},
{"learn":[0.04973460752],"iteration":599,"passed_time":0.6743038292,"remaining_time":0.4495358861},
{"learn":[0.04971676935],"iteration":600,"passed_time":0.6754448183,"remaining_time":0.4484234318},
{"learn":[0.04970471962],"iteration":601,"passed_time":0.6765491158,"remaining_time":0.4472866247},
{"learn":[0.04968703619],"iteration":602,"passed_time":0.6776549923,"remaining_time":0.4461509651},
{"learn":[0.04966537961],"iteration":603,"passed_time":0.6787532677,"remaining_time":0.4450104205},
{"learn":[0.0496310801],"iteration":604,"passed_time":0.6798332583,"remaining_time":0.4438580777},
{"learn":[0.0496112634],"iteration":605,"passed_time":0.6809379341,"remaining_time":0.4427220232},
{"learn":[0.04958591822],"iteration":606,"passed_time":0.6820514626,"remaining_time":0.4415918036},
{"learn":[0.04956369772],"iteration":607,"passed_time":0.6831758085,"remaining_time":0.4404686134},
{"learn":[0.04952161345],"iteration":608,"passed_time":0.6843223231,"remaining_time":0.4393596524},
{"learn":[0.04951001574],"iteration":609,"passed_time":0.6854241887,"remaining_time":0.4382220223},
{"learn":[0.0494690954],"iteration":610,"passed_time":0.6864763248,"remaining_time":0.4370528483},
{"learn":[0.04943858066],"iteration":611,"passed_time":0.6875836311,"remaining_time":0.4359190341},
{"learn":[0.04940574285],"iteration":612,"passed_time":0.688738145,"remaining_time":0.4348151095},
{"learn":[0.04938404307],"iteration":613,"passed_time":0.6899143637,"remaining_time":0.4337246652},
{"learn":[0.04936161019],"iteration":614,"passed_time":0.691149527,"remaining_time":0.4326708421},
{"learn":[0.04933006071],"iteration":615,"passed_time":0.6922932185,"remaining_time":0.4315594089},
{"learn":[0.04930894025],"iteration":616,"passed_time":0.6934317621,"remaining_time":0.4304446757},
{"learn":[0.04927093337],"iteration":617,"passed_time":0.6945368301,"remaining_time":0.4293091733},
{"learn":[0.0492539502],"iteration":618,"passed_time":0.6956194768,"remaining_time":0.4281599688},
{"learn":[0.04921527637],"iteration":619,"passed_time":0.6967371017,"remaining_time":0.4270324171},
{"learn":[0.04919073409],"iteration":620,"passed_time":0.6979129165,"remaining_time":0.4259404112},
{"learn":[0.04917106071],"iteration":621,"passed_time":0.6990254383,"remaining_time":0.4248096715},
{"learn":[0.04913192626],"iteration":622,"passed_time":0.7001152951,"remaining_time":0.4236652749},
{"learn":[0.04909434229],"iteration":623,"passed_time":0.701232742,"remaining_time":0.4225376779},
{"learn":[0.04906347224],"iteration":624,"passed_time":0.7023899113,"remaining_time":0.4214339468},
{"learn":[0.04902947428],"iteration":625,"passed_time":0.7035208246,"remaining_time":0.4203143585},
{"learn":[0.04900000223],"iteration":626,"passed_time":0.7046192128,"remaining_time":0.4191753849},
{"learn":[0.04897405963],"iteration":627,"passed_time":0.7057196368,"remaining_time":0.4180377466},
{"learn":[0.04894495833],"iteration":628,"passed_time":0.706924667,"remaining_time":0.416961926},
{"learn":[0.04893668707],"iteration":629,"passed_time":0.7080263087,"remaining_time":0.415824975},
{"learn":[0.04892243028],"iteration":630,"passed_time":0.7091462854,"remaining_time":0.4146988579},
{"learn":[0.04889696679],"iteration":631,"passed_time":0.7102641497,"remaining_time":0.4135715302},
{"learn":[0.04886273901],"iteration":632,"passed_time":0.7113905853,"remaining_time":0.4124492019},
{"learn":[0.04883550951],"iteration":633,"passed_time":0.712520263,"remaining_time":0.4113287323},
{"learn":[0.04880750303],"iteration":634,"passed_time":0.7136385366,"remaining_time":0.4102016785},
{"learn":[0.04878571887],"iteration":635,"passed_time":0.7147537088,"remaining_time":0.4090728774},
{"learn":[0.04876259654],"iteration":636,"passed_time":0.7158750983,"remaining_time":0.407947662},
{"learn":[0.0487515373],"iteration":637,"passed_time":0.7169896844,"remaining_time":0.4068185984},
{"learn":[0.04870316411],"iteration":638,"passed_time":0.7181366156,"remaining_time":0.4057078533},
{"learn":[0.04868566279],"iteration":639,"passed_time":0.7191994624,"remaining_time":0.4045496976},
{"learn":[0.0486117139],"iteration":640,"passed_time":0.7203554267,"remaining_time":0.403443991},
{"learn":[0.04857691631],"iteration":641,"passed_time":0.7214834572,"remaining_time":0.4023225509},
{"learn":[0.04856901499],"iteration":642,"passed_time":0.7225917379,"remaining_time":0.4011901251},
{"learn":[0.04855004172],"iteration":643,"passed_time":0.7237452201,"remaining_time":0.4000827614},
{"learn":[0.04853162896],"iteration":644,"passed_time":0.7249055897,"remaining_time":0.3989790455},
{"learn":[0.0485000216],"iteration":645,"passed_time":0.726043833,"remaining_time":0.3978630292},
{"learn":[0.04848006142],"iteration":646,"passed_time":0.7272146448,"remaining_time":0.3967647135},
{"learn":[0.04846870279],"iteration":647,"passed_time":0.7283795362,"remaining_time":0.395662958},
{"learn":[0.04843310661],"iteration":648,"passed_time":0.7294499539,"remaining_time":0.3945099134},
{"learn":[0.0484068178],"iteration":649,"passed_time":0.7305933205,"remaining_time":0.3933964033},
{"learn":[0.04838981337],"iteration":650,"passed_time":0.7317237288,"remaining_time":0.3922758546},
{"learn":[0.04836700645],"iteration":651,"passed_time":0.7327719416,"remaining_time":0.3911114044},
{"learn":[0.04835326852],"iteration":652,"passed_time":0.7338708699,"remaining_time":0.3899742601},
{"learn":[0.04833138229],"iteration":653,"passed_time":0.7350097374,"remaining_time":0.3888583626},
{"learn":[0.04830084897],"iteration":654,"passed_time":0.7362148056,"remaining_time":0.387777264},
{"learn":[0.04828627767],"iteration":655,"passed_time":0.7373162004,"remaining_time":0.3866414222},
{"learn":[0.04824872165],"iteration":656,"passed_time":0.7384106606,"remaining_time":0.3855020648},
{"learn":[0.0482118687],"iteration":657,"passed_time":0.7395417857,"remaining_time":0.3843819008},
{"learn":[0.04818637782],"iteration":658,"passed_time":0.7406281654,"remaining_time":0.3832385499},
{"learn":[0.04816142488],"iteration":659,"passed_time":0.7417359934,"remaining_time":0.3821064208},
{"learn":[0.04813154764],"iteration":660,"passed_time":0.7428371921,"remaining_time":0.3809709654},
{"learn":[0.04810089776],"iteration":661,"passed_time":0.7439809231,"remaining_time":0.3798573293},
{"learn":[0.04806434653],"iteration":662,"passed_time":0.7450932143,"remaining_time":0.3787276218},
{"learn":[0.0480421926],"iteration":663,"passed_time":0.7462091591,"remaining_time":0.3775998155},
{"learn":[0.04802428491],"iteration":664,"passed_time":0.7473467512,"remaining_time":0.3764829498},
{"learn":[0.04799166896],"iteration":665,"passed_time":0.7484232405,"remaining_time":0.3753353789},
{"learn":[0.04798415592],"iteration":666,"passed_time":0.7494571954,"remaining_time":0.3741667857},
{"learn":[0.04794919922],"iteration":667,"passed_time":0.7505804567,"remaining_time":0.3730429815},
{"learn":[0.04792658069],"iteration":668,"passed_time":0.7516394082,"remaining_time":0.3718873604},
{"learn":[0.04783709993],"iteration":669,"passed_time":0.7527925691,"remaining_time":0.3707784295},
{"learn":[0.04781033793],"iteration":670,"passed_time":0.7539334151,"remaining_time":0.3696633287},
{"learn":[0.04779984302],"iteration":671,"passed_time":0.7549927268,"remaining_time":0.3685083547},
{"learn":[0.04773094433],"iteration":672,"passed_time":0.7560660788,"remaining_time":0.367360487},
{"learn":[0.04767335436],"iteration":673,"passed_time":0.7571384629,"remaining_time":0.3662123723},
{"learn":[0.04765766665],"iteration":674,"passed_time":0.7583311064,"remaining_time":0.3651223845},
{"learn":[0.04765047298],"iteration":675,"passed_time":0.7594265352,"remaining_time":0.3639854991},
{"learn":[0.04764102169],"iteration":676,"passed_time":0.7605514932,"remaining_time":0.3628628247},
{"learn":[0.04762257954],"iteration":677,"passed_time":0.7616818884,"remaining_time":0.3617427257},
{"learn":[0.04761230795],"iteration":678,"passed_time":0.7628136924,"remaining_time":0.3606232625},
{"learn":[0.04755734518],"iteration":679,"passed_time":0.763855389,"remaining_time":0.3594613595},
{"learn":[0.04753809842],"iteration":680,"passed_time":0.764927681,"remaining_time":0.3583141413},
{"learn":[0.04749551746],"iteration":681,"passed_time":0.7660685548,"remaining_time":0.3571991208},
{"learn":[0.04747913775],"iteration":682,"passed_time":0.7672614025,"remaining_time":0.3561081473},
{"learn":[0.04743891167],"iteration":683,"passed_time":0.7683667491,"remaining_time":0.3549764513},
{"learn":[0.04736938779],"iteration":684,"passed_time":0.7694535366,"remaining_time":0.3538362979},
{"learn":[0.047345942],"iteration":685,"passed_time":0.7706002639,"remaining_time":0.352723736},
{"learn":[0.04731626271],"iteration":686,"passed_time":0.7716690564,"remaining_time":0.3515755672},
{"learn":[0.04730940373],"iteration":687,"passed_time":0.7727584495,"remaining_time":0.3504369713},
{"learn":[0.04724350218],"iteration":688,"passed_time":0.7739272553,"remaining_time":0.3493343634},
{"learn":[0.0472144353],"iteration":689,"passed_time":0.7750433717,"remaining_time":0.3482078916},
{"learn":[0.04718701294],"iteration":690,"passed_time":0.7761472906,"remaining_time":0.3470759954},
{"learn":[0.04716366813],"iteration":691,"passed_time":0.7771941682,"remaining_time":0.3459187916},
{"learn":[0.04714382715],"iteration":692,"passed_time":0.7782703941,"remaining_time":0.3447749076},
{"learn":[0.04712877313],"iteration":693,"passed_time":0.779344939,"remaining_time":0.3436304774},
{"learn":[0.04710467136],"iteration":694,"passed_time":0.7804277263,"remaining_time":0.3424898655},
{"learn":[0.0470257924],"iteration":695,"passed_time":0.7815478468,"remaining_time":0.3413657262},
{"learn":[0.04700314362],"iteration":696,"passed_time":0.7826174057,"remaining_time":0.3402196183},
{"learn":[0.04697725198],"iteration":697,"passed_time":0.7837272387,"remaining_time":0.3390911548},
{"learn":[0.04691697923],"iteration":698,"passed_time":0.7848290313,"remaining_time":0.3379592824},
{"learn":[0.04689498692],"iteration":699,"passed_time":0.7859409033,"remaining_time":0.3368318157},
{"learn":[0.04686742948],"iteration":700,"passed_time":0.7870147162,"remaining_time":0.33568816},
{"learn":[0.04684460551],"iteration":701,"passed_time":0.7880578943,"remaining_time":0.3345316987},
{"learn":[0.04681552787],"iteration":702,"passed_time":0.7891420399,"remaining_time":0.3333928675},
{"learn":[0.04679128989],"iteration":703,"passed_time":0.7902682512,"remaining_time":0.3322718784},
{"learn":[0.04677124399],"iteration":704,"passed_time":0.7913844683,"remaining_time":0.3311466924},
{"learn":[0.04674399361],"iteration":705,"passed_time":0.7924473599,"remaining_time":0.3299993255},
{"learn":[0.04671481197],"iteration":706,"passed_time":0.7935584774,"remaining_time":0.3288721837},
{"learn":[0.04669103764],"iteration":707,"passed_time":0.7948666651,"remaining_time":0.3278263647},
{"learn":[0.04666508543],"iteration":708,"passed_time":0.7960165047,"remaining_time":0.3267148137},
{"learn":[0.04665521609],"iteration":709,"passed_time":0.7970780562,"remaining_time":0.3255670934},
{"learn":[0.04664570761],"iteration":710,"passed_time":0.7981729395,"remaining_time":0.3244331639},
{"learn":[0.04662956626],"iteration":711,"passed_time":0.7992454001,"remaining_time":0.3232902742},
{"learn":[0.04662292157],"iteration":712,"passed_time":0.8002998179,"remaining_time":0.3221403194},
{"learn":[0.04660554855],"iteration":713,"passed_time":0.8014078887,"remaining_time":0.3210121235},
{"learn":[0.04659637838],"iteration":714,"passed_time":0.8025658715,"remaining_time":0.3199038788},
{"learn":[0.04658415937],"iteration":715,"passed_time":0.8037365762,"remaining_time":0.3188005414},
{"learn":[0.04656613816],"iteration":716,"passed_time":0.8048644754,"remaining_time":0.3176801207},
{"learn":[0.04654768151],"iteration":717,"passed_time":0.8059692889,"remaining_time":0.3165506121},
{"learn":[0.04651977657],"iteration":718,"passed_time":0.8070918474,"remaining_time":0.3154281072},
{"learn":[0.04649301235],"iteration":719,"passed_time":0.8082353787,"remaining_time":0.3143137584},
{"learn":[0.04648661233],"iteration":720,"passed_time":0.8092739025,"remaining_time":0.3131586946},
{"learn":[0.04645855784],"iteration":721,"passed_time":0.8104177815,"remaining_time":0.3120445198},
{"learn":[0.04642565155],"iteration":722,"passed_time":0.8116153419,"remaining_time":0.3109508295},
{"learn":[0.04639385029],"iteration":723,"passed_time":0.8127566861,"remaining_time":0.3098354218},
{"learn":[0.04636737706],"iteration":724,"passed_time":0.8138533565,"remaining_time":0.3087029973},
{"learn":[0.04634602446],"iteration":725,"passed_time":0.8149479875,"remaining_time":0.3075699016},
{"learn":[0.04630920393],"iteration":726,"passed_time":0.816062916,"remaining_time":0.3064445338},
{"learn":[0.04629173443],"iteration":727,"passed_time":0.8171685836,"remaining_time":0.3053157345},
{"learn":[0.0462725041],"iteration":728,"passed_time":0.8183062429,"remaining_time":0.3041988914},
{"learn":[0.04623994276],"iteration":729,"passed_time":0.8194025219,"remaining_time":0.3030666862},
{"learn":[0.04622078884],"iteration":730,"passed_time":0.8204620794,"remaining_time":0.3019210662},
{"learn":[0.04620217043],"iteration":731,"passed_time":0.8215680524,"remaining_time":0.3007926749},
{"learn":[0.04617746189],"iteration":732,"passed_time":0.8226749502,"remaining_time":0.2996646817},
{"learn":[0.04613111467],"iteration":733,"passed_time":0.823855598,"remaining_time":0.2985634728},
{"learn":[0.04611037503],"iteration":734,"passed_time":0.8250443985,"remaining_time":0.2974649872},
{"learn":[0.04605253887],"iteration":735,"passed_time":0.8261445777,"remaining_time":0.2963344681},
{"learn":[0.04603621856],"iteration":736,"passed_time":0.8272019716,"remaining_time":0.2951887633},
{"learn":[0.04599197289],"iteration":737,"passed_time":0.8283054347,"remaining_time":0.294059653},
{"learn":[0.04596783157],"iteration":738,"passed_time":0.8294327008,"remaining_time":0.2929390188},
{"learn":[0.04595005464],"iteration":739,"passed_time":0.8305413487,"remaining_time":0.2918118252},
{"learn":[0.04592678914],"iteration":740,"passed_time":0.8317414645,"remaining_time":0.2907166522},
{"learn":[0.04591605654],"iteration":741,"passed_time":0.8329208579,"remaining_time":0.289613991},
{"learn":[0.0459017958],"iteration":742,"passed_time":0.8340273315,"remaining_time":0.2884859007},
{"learn":[0.0458664223],"iteration":743,"passed_time":0.8350905483,"remaining_time":0.2873429844},
{"learn":[0.04585773088],"iteration":744,"passed_time":0.8362037925,"remaining_time":0.2862174055},
{"learn":[0.04584394216],"iteration":745,"passed_time":0.83732474,"remaining_time":0.2850944825},
{"learn":[0.04581926801],"iteration":746,"passed_time":0.8384389881,"remaining_time":0.2839692958},
{"learn":[0.04578456017],"iteration":747,"passed_time":0.8399256447,"remaining_time":0.2829696022},
{"learn":[0.0457650652],"iteration":748,"passed_time":0.8411230345,"remaining_time":0.2818716711},
{"learn":[0.04570656502],"iteration":749,"passed_time":0.8422951008,"remaining_time":0.2807650336},
{"learn":[0.04567819925],"iteration":750,"passed_time":0.8434443956,"remaining_time":0.2796506718},
{"learn":[0.04565387521],"iteration":751,"passed_time":0.8446128215,"remaining_time":0.2785425262},
{"learn":[0.04561834595],"iteration":752,"passed_time":0.8457261383,"remaining_time":0.2774161436},
{"learn":[0.04560155767],"iteration":753,"passed_time":0.8469110912,"remaining_time":0.2763131677},
{"learn":[0.04557942139],"iteration":754,"passed_time":0.8480697726,"remaining_time":0.2752014494},
{"learn":[0.0455496426],"iteration":755,"passed_time":0.849280031,"remaining_time":0.2741062534},
{"learn":[0.04550938347],"iteration":756,"passed_time":0.850395825,"remaining_time":0.2729804299},
{"learn":[0.04547099272],"iteration":757,"passed_time":0.8515015694,"remaining_time":0.2718514245},
{"learn":[0.04543342284],"iteration":758,"passed_time":0.8526634389,"remaining_time":0.2707403014},
{"learn":[0.045417094],"iteration":759,"passed_time":0.8537531971,"remaining_time":0.2696062728},
{"learn":[0.0454019336],"iteration":760,"passed_time":0.8548156051,"remaining_time":0.2684637708},
{"learn":[0.04539401117],"iteration":761,"passed_time":0.8559563821,"remaining_time":0.2673459566},
{"learn":[0.0453399417],"iteration":762,"passed_time":0.8570841649,"remaining_time":0.266224046},
{"learn":[0.04533225259],"iteration":763,"passed_time":0.8582387172,"remaining_time":0.2651103891},
{"learn":[0.04531089985],"iteration":764,"passed_time":0.8593547314,"remaining_time":0.2639847868},
{"learn":[0.04528955009],"iteration":765,"passed_time":0.860531521,"remaining_time":0.2628777753},
{"learn":[0.04526023921],"iteration":766,"passed_time":0.8616652961,"remaining_time":0.261757515},
{"learn":[0.0452442942],"iteration":767,"passed_time":0.8627905779,"remaining_time":0.2606346538},
{"learn":[0.04521359939],"iteration":768,"passed_time":0.863926511,"remaining_time":0.2595149857},
{"learn":[0.04519096198],"iteration":769,"passed_time":0.8651289523,"remaining_time":0.2584151416},
{"learn":[0.0451761666],"iteration":770,"passed_time":0.8662423089,"remaining_time":0.2572885717},
{"learn":[0.04514879274],"iteration":771,"passed_time":0.8674592458,"remaining_time":0.256192627},
{"learn":[0.04513210101],"iteration":772,"passed_time":0.8687159022,"remaining_time":0.2551080334},
{"learn":[0.04510860379],"iteration":773,"passed_time":0.8699343828,"remaining_time":0.2540118482},
{"learn":[0.04508462212],"iteration":774,"passed_time":0.8710344656,"remaining_time":0.2528809739},
{"learn":[0.04505578494],"iteration":775,"passed_time":0.8721422776,"remaining_time":0.25175241},
{"learn":[0.04503187725],"iteration":776,"passed_time":0.873276568,"remaining_time":0.2506314989},
{"learn":[0.04499891713],"iteration":777,"passed_time":0.8744175969,"remaining_time":0.2495124762},
{"learn":[0.04498384215],"iteration":778,"passed_time":0.8755885945,"remaining_time":0.2484018991},
{"learn":[0.04497045255],"iteration":779,"passed_time":0.8767107092,"remaining_time":0.2472773795},
{"learn":[0.04492353019],"iteration":780,"passed_time":0.8778440282,"remaining_time":0.2461560079},
{"learn":[0.04491255495],"iteration":781,"passed_time":0.8789849034,"remaining_time":0.2450367122},
{"learn":[0.0448899462],"iteration":782,"passed_time":0.8800924802,"remaining_time":0.2439081331},
{"learn":[0.04488264607],"iteration":783,"passed_time":0.8812415722,"remaining_time":0.2427910454},
{"learn":[0.04486773261],"iteration":784,"passed_time":0.882357918,"remaining_time":0.2416649075},
{"learn":[0.04485128219],"iteration":785,"passed_time":0.8835078744,"remaining_time":0.2405479454},
{"learn":[0.04481888866],"iteration":786,"passed_time":0.8846655213,"remaining_time":0.239432981},
{"learn":[0.04478842669],"iteration":787,"passed_time":0.8858021525,"remaining_time":0.2383122542},
{"learn":[0.04475976661],"iteration":788,"passed_time":0.8869501659,"remaining_time":0.2371945311},
{"learn":[0.04472355356],"iteration":789,"passed_time":0.888154937,"remaining_time":0.2360918187},
{"learn":[0.04469652162],"iteration":790,"passed_time":0.8892534003,"remaining_time":0.2349607594},
{"learn":[0.04468182797],"iteration":791,"passed_time":0.890435084,"remaining_time":0.2338516382},
{"learn":[0.04465633892],"iteration":792,"passed_time":0.891511064,"remaining_time":0.2327147418},
{"learn":[0.04464204494],"iteration":793,"passed_time":0.8925649389,"remaining_time":0.2315722637},
{"learn":[0.04462146897],"iteration":794,"passed_time":0.8936947188,"remaining_time":0.2304495816},
{"learn":[0.0445810165],"iteration":795,"passed_time":0.8948101565,"remaining_time":0.2293232059},
{"learn":[0.04456289259],"iteration":796,"passed_time":0.8959277304,"remaining_time":0.2281974018},
{"learn":[0.04453824996],"iteration":797,"passed_time":0.8971239089,"remaining_time":0.2270915158},
{"learn":[0.04451573925],"iteration":798,"passed_time":0.8982703053,"remaining_time":0.2259728803},
{"learn":[0.04448122351],"iteration":799,"passed_time":0.8993359747,"remaining_time":0.2248339937},
{"learn":[0.04446741322],"iteration":800,"passed_time":0.9004804719,"remaining_time":0.2237148738},
{"learn":[0.04444484859],"iteration":801,"passed_time":0.9016278846,"remaining_time":0.2225964104},
{"learn":[0.04443209294],"iteration":802,"passed_time":0.9026635732,"remaining_time":0.2214504657},
{"learn":[0.04439631636],"iteration":803,"passed_time":0.9037932627,"remaining_time":0.2203277108},
{"learn":[0.04437476871],"iteration":804,"passed_time":0.9049112093,"remaining_time":0.2192020942},
{"learn":[0.04434796616],"iteration":805,"passed_time":0.9060292665,"remaining_time":0.2180765232},
{"learn":[0.04432739374],"iteration":806,"passed_time":0.9071374244,"remaining_time":0.2169486033},
{"learn":[0.04429038228],"iteration":807,"passed_time":0.9083270893,"remaining_time":0.2158401004},
{"learn":[0.04426139463],"iteration":808,"passed_time":0.9095475495,"remaining_time":0.2147386674},
{"learn":[0.04424471838],"iteration":809,"passed_time":0.9106558793,"remaining_time":0.2136106383},
{"learn":[0.04421234456],"iteration":810,"passed_time":0.9117579979,"remaining_time":0.2124812104},
{"learn":[0.0441793486],"iteration":811,"passed_time":0.9129128893,"remaining_time":0.211364068},
{"learn":[0.04415636799],"iteration":812,"passed_time":0.9140820084,"remaining_time":0.2102501052},
{"learn":[0.04412181627],"iteration":813,"passed_time":0.9151872258,"remaining_time":0.2091214054},
{"learn":[0.04410475357],"iteration":814,"passed_time":0.9162940599,"remaining_time":0.2079931302},
{"learn":[0.04408502358],"iteration":815,"passed_time":0.9173941715,"remaining_time":0.2068633916},
{"learn":[0.04406188451],"iteration":816,"passed_time":0.9184938511,"remaining_time":0.2057336288},
{"learn":[0.04404229112],"iteration":817,"passed_time":0.9195780746,"remaining_time":0.2046005007},
{"learn":[0.04402088562],"iteration":818,"passed_time":0.9206949073,"remaining_time":0.2034746987},
{"learn":[0.04400505725],"iteration":819,"passed_time":0.9219314904,"remaining_time":0.2023752052},
{"learn":[0.0439758257],"iteration":820,"passed_time":0.9230617479,"remaining_time":0.2012521959},
{"learn":[0.04394538032],"iteration":821,"passed_time":0.9241911651,"remaining_time":0.2001289871},
{"learn":[0.0439281695],"iteration":822,"passed_time":0.925338507,"remaining_time":0.1990096182},
{"learn":[0.04391094098],"iteration":823,"passed_time":0.9265000452,"remaining_time":0.1978932135},
{"learn":[0.04386703155],"iteration":824,"passed_time":0.9276251057,"remaining_time":0.1967689618},
{"learn":[0.04384626503],"iteration":825,"passed_time":0.9287016825,"remaining_time":0.1956344949},
{"learn":[0.04383896926],"iteration":826,"passed_time":0.9298255039,"remaining_time":0.194510051},
{"learn":[0.04383191305],"iteration":827,"passed_time":0.9309036469,"remaining_time":0.1933761199},
{"learn":[0.04381439683],"iteration":828,"passed_time":0.9320402967,"remaining_time":0.1922543917},
{"learn":[0.04380059056],"iteration":829,"passed_time":0.9331652931,"remaining_time":0.1911302408},
{"learn":[0.04378534507],"iteration":830,"passed_time":0.9343310528,"remaining_time":0.1900143778},
{"learn":[0.0437596593],"iteration":831,"passed_time":0.935465987,"remaining_time":0.1888921704},
{"learn":[0.04371346993],"iteration":832,"passed_time":0.9366572137,"remaining_time":0.1877812181},
{"learn":[0.04369903699],"iteration":833,"passed_time":0.9378044354,"remaining_time":0.1866613145},
{"learn":[0.04367011698],"iteration":834,"passed_time":0.9388990414,"remaining_time":0.1855309483},
{"learn":[0.04364704372],"iteration":835,"passed_time":0.9399813071,"remaining_time":0.1843982468},
{"learn":[0.04363688343],"iteration":836,"passed_time":0.9410945178,"remaining_time":0.1832716922},
{"learn":[0.04363014016],"iteration":837,"passed_time":0.9422054397,"remaining_time":0.182144727},
{"learn":[0.04360997453],"iteration":838,"passed_time":0.9433500212,"remaining_time":0.1810242591},
{"learn":[0.04358272975],"iteration":839,"passed_time":0.9444957624,"remaining_time":0.1799039547},
{"learn":[0.04355575644],"iteration":840,"passed_time":0.9456248822,"remaining_time":0.1787804474},
{"learn":[0.04353332199],"iteration":841,"passed_time":0.9467858912,"remaining_time":0.1776629107},
{"learn":[0.04351631152],"iteration":842,"passed_time":0.9478509275,"remaining_time":0.1765273969},
{"learn":[0.04349580903],"iteration":843,"passed_time":0.9488733836,"remaining_time":0.1753841799},
{"learn":[0.04345177857],"iteration":844,"passed_time":0.9499687309,"remaining_time":0.1742546193},
{"learn":[0.04343528498],"iteration":845,"passed_time":0.9510557429,"remaining_time":0.1731236222},
{"learn":[0.04340847822],"iteration":846,"passed_time":0.9521669192,"remaining_time":0.171997094},
{"learn":[0.04338566099],"iteration":847,"passed_time":0.9533261692,"remaining_time":0.170879219},
{"learn":[0.04336493004],"iteration":848,"passed_time":0.9545120478,"remaining_time":0.1697659826},
{"learn":[0.04334938601],"iteration":849,"passed_time":0.9555532975,"remaining_time":0.1686270525},
{"learn":[0.04333487311],"iteration":850,"passed_time":0.9566237916,"remaining_time":0.1674934723},
{"learn":[0.04332138778],"iteration":851,"passed_time":0.9577181685,"remaining_time":0.1663641889},
{"learn":[0.04330077157],"iteration":852,"passed_time":0.9587965681,"remaining_time":0.1652322339},
{"learn":[0.04328448024],"iteration":853,"passed_time":0.9598464548,"remaining_time":0.1640955297},
{"learn":[0.04325236846],"iteration":854,"passed_time":0.9609359661,"remaining_time":0.1629657486},
{"learn":[0.04323609001],"iteration":855,"passed_time":0.9620336578,"remaining_time":0.1618374378},
{"learn":[0.0432230608],"iteration":856,"passed_time":0.9630985415,"remaining_time":0.160703724},
{"learn":[0.04320829683],"iteration":857,"passed_time":0.9641947909,"remaining_time":0.1595753617},
{"learn":[0.04318863037],"iteration":858,"passed_time":0.965220239,"remaining_time":0.1584354525},
{"learn":[0.04317767235],"iteration":859,"passed_time":0.9663314128,"remaining_time":0.1573097649},
{"learn":[0.04314792309],"iteration":860,"passed_time":0.9674315376,"remaining_time":0.1561823272},
{"learn":[0.04312981527],"iteration":861,"passed_time":0.9684757914,"remaining_time":0.1550460084},
{"learn":[0.04309018204],"iteration":862,"passed_time":0.969593108,"remaining_time":0.1539215015},
{"learn":[0.04307572642],"iteration":863,"passed_time":0.9706526652,"remaining_time":0.1527879195},
{"learn":[0.04304123882],"iteration":864,"passed_time":0.9717302659,"remaining_time":0.1516573247},
{"learn":[0.04302150085],"iteration":865,"passed_time":0.9728797298,"remaining_time":0.150537972},
{"learn":[0.04297149805],"iteration":866,"passed_time":0.9741015842,"remaining_time":0.1494296548},
{"learn":[0.04295513953],"iteration":867,"passed_time":0.9752265042,"remaining_time":0.1483063347},
{"learn":[0.04293372746],"iteration":868,"passed_time":0.9763658588,"remaining_time":0.147185187},
{"learn":[0.04291872015],"iteration":869,"passed_time":0.9774306421,"remaining_time":0.1460528546},
{"learn":[0.04290034979],"iteration":870,"passed_time":0.9784954087,"remaining_time":0.1449206748},
{"learn":[0.04288295606],"iteration":871,"passed_time":0.9795922389,"remaining_time":0.1437933562},
{"learn":[0.04284226648],"iteration":872,"passed_time":0.9806959767,"remaining_time":0.1426671123},
{"learn":[0.0428294659],"iteration":873,"passed_time":0.9818472188,"remaining_time":0.1415477684},
{"learn":[0.04281302218],"iteration":874,"passed_time":0.9830126355,"remaining_time":0.1404303765},
{"learn":[0.04279536673],"iteration":875,"passed_time":0.9840945563,"remaining_time":0.1393010559},
{"learn":[0.04277866089],"iteration":876,"passed_time":0.9852091631,"remaining_time":0.1381764277},
{"learn":[0.04276271],"iteration":877,"passed_time":0.9862958644,"remaining_time":0.1370479447},
{"learn":[0.04273927084],"iteration":878,"passed_time":0.9873918452,"remaining_time":0.1359208342},
{"learn":[0.04272044087],"iteration":879,"passed_time":0.9884087228,"remaining_time":0.1347830077},
{"learn":[0.04268494791],"iteration":880,"passed_time":0.9893954481,"remaining_time":0.1336413829},
{"learn":[0.04266244749],"iteration":881,"passed_time":0.9905430167,"remaining_time":0.1325216281},
{"learn":[0.04264360609],"iteration":882,"passed_time":0.9917039691,"remaining_time":0.1314035837},
{"learn":[0.04262471932],"iteration":883,"passed_time":0.9927898036,"remaining_time":0.1302755851},
{"learn":[0.04259803687],"iteration":884,"passed_time":0.9939020479,"remaining_time":0.1291511136},
{"learn":[0.04258263899],"iteration":885,"passed_time":0.9949670917,"remaining_time":0.1280205964},
{"learn":[0.04255795971],"iteration":886,"passed_time":0.9961180238,"remaining_time":0.1269011688},
{"learn":[0.04254566744],"iteration":887,"passed_time":0.9972387172,"remaining_time":0.1257778562},
{"learn":[0.04252980116],"iteration":888,"passed_time":0.998374304,"remaining_time":0.1246564092},
{"learn":[0.04250884212],"iteration":889,"passed_time":0.9995184314,"remaining_time":0.1235359859},
{"learn":[0.0424964575],"iteration":890,"passed_time":1.000685898,"remaining_time":0.1224183646},
{"learn":[0.04248132396],"iteration":891,"passed_time":1.001736414,"remaining_time":0.1212864716},
{"learn":[0.04246742747],"iteration":892,"passed_time":1.002866017,"remaining_time":0.1201642372},
{"learn":[0.04243631774],"iteration":893,"passed_time":1.003966944,"remaining_time":0.1190385862},
{"learn":[0.04241610857],"iteration":894,"passed_time":1.005149081,"remaining_time":0.1179225179},
{"learn":[0.0423946179],"iteration":895,"passed_time":1.006263232,"remaining_time":0.1167984108},
{"learn":[0.04237419347],"iteration":896,"passed_time":1.007387001,"remaining_time":0.1156754305},
{"learn":[0.04235460165],"iteration":897,"passed_time":1.008526043,"remaining_time":0.114554183},
{"learn":[0.04234247983],"iteration":898,"passed_time":1.009646896,"remaining_time":0.1134308526},
{"learn":[0.0423320518],"iteration":899,"passed_time":1.010803311,"remaining_time":0.112311479},
{"learn":[0.04231309828],"iteration":900,"passed_time":1.011874429,"remaining_time":0.1111826509},
{"learn":[0.04229669972],"iteration":901,"passed_time":1.012985971,"remaining_time":0.1100583427},
{"learn":[0.04226972675],"iteration":902,"passed_time":1.014071349,"remaining_time":0.1089312523},
{"learn":[0.04223343689],"iteration":903,"passed_time":1.015157982,"remaining_time":0.1078043875},
{"learn":[0.04220561561],"iteration":904,"passed_time":1.016304513,"remaining_time":0.1066838992},
{"learn":[0.042195177],"iteration":905,"passed_time":1.017365211,"remaining_time":0.1055544479},
{"learn":[0.04215341348],"iteration":906,"passed_time":1.018441422,"remaining_time":0.104426739},
{"learn":[0.04214481199],"iteration":907,"passed_time":1.01953099,"remaining_time":0.1033004968},
{"learn":[0.04212654962],"iteration":908,"passed_time":1.020633786,"remaining_time":0.1021756595},
{"learn":[0.042104943],"iteration":909,"passed_time":1.021732115,"remaining_time":0.101050429},
{"learn":[0.04207614613],"iteration":910,"passed_time":1.022837664,"remaining_time":0.0999259628},
{"learn":[0.04205124527],"iteration":911,"passed_time":1.023969239,"remaining_time":0.09880404938},
{"learn":[0.04202761323],"iteration":912,"passed_time":1.02508348,"remaining_time":0.09768046301},
{"learn":[0.04200430334],"iteration":913,"passed_time":1.026262139,"remaining_time":0.09656295833},
{"learn":[0.04198287385],"iteration":914,"passed_time":1.027343015,"remaining_time":0.09543623632},
{"learn":[0.04195749518],"iteration":915,"passed_time":1.028485858,"remaining_time":0.09431529699},
{"learn":[0.04194335257],"iteration":916,"passed_time":1.029646641,"remaining_time":0.09319593367},
{"learn":[0.04192241487],"iteration":917,"passed_time":1.030963351,"remaining_time":0.09209040824},
{"learn":[0.04190883066],"iteration":918,"passed_time":1.032136615,"remaining_time":0.09097177998},
{"learn":[0.04189577631],"iteration":919,"passed_time":1.033278891,"remaining_time":0.08985033836},
{"learn":[0.04187665658],"iteration":920,"passed_time":1.034461527,"remaining_time":0.08873231337},
{"learn":[0.0418553006],"iteration":921,"passed_time":1.035575672,"remaining_time":0.08760835403},
{"learn":[0.0418441153],"iteration":922,"passed_time":1.036663489,"remaining_time":0.08648221953},
{"learn":[0.04182985993],"iteration":923,"passed_time":1.037724717,"remaining_time":0.08535398107},
{"learn":[0.04180051843],"iteration":924,"passed_time":1.038848358,"remaining_time":0.08423094791},
{"learn":[0.04177732328],"iteration":925,"passed_time":1.039909378,"remaining_time":0.08310290923},
{"learn":[0.0417512722],"iteration":926,"passed_time":1.04103059,"remaining_time":0.08197975519},
{"learn":[0.0417330868],"iteration":927,"passed_time":1.042090786,"remaining_time":0.08085187131},
{"learn":[0.04171782144],"iteration":928,"passed_time":1.043157182,"remaining_time":0.07972460699},
{"learn":[0.04170212428],"iteration":929,"passed_time":1.044236653,"remaining_time":0.07859845775},
{"learn":[0.04168611882],"iteration":930,"passed_time":1.045334234,"remaining_time":0.07747375094},
{"learn":[0.04167486515],"iteration":931,"passed_time":1.046549698,"remaining_time":0.07635770331},
{"learn":[0.04166403636],"iteration":932,"passed_time":1.047695694,"remaining_time":0.07523645389},
{"learn":[0.04164949755],"iteration":933,"passed_time":1.048796088,"remaining_time":0.07411192914},
{"learn":[0.04162848084],"iteration":934,"passed_time":1.049918849,"remaining_time":0.07298901092},
{"learn":[0.04161218675],"iteration":935,"passed_time":1.051037386,"remaining_time":0.07186580419},
{"learn":[0.04159204351],"iteration":936,"passed_time":1.052158897,"remaining_time":0.07074280738},
{"learn":[0.04158160705],"iteration":937,"passed_time":1.053243997,"remaining_time":0.06961740704},
{"learn":[0.04156222298],"iteration":938,"passed_time":1.054393294,"remaining_time":0.06849626296},
{"learn":[0.04154995366],"iteration":939,"passed_time":1.055433771,"remaining_time":0.06736811301},
{"learn":[0.04152435136],"iteration":940,"passed_time":1.056546887,"remaining_time":0.06624470386},
{"learn":[0.04151462762],"iteration":941,"passed_time":1.057740569,"remaining_time":0.06512627706},
{"learn":[0.04150526937],"iteration":942,"passed_time":1.058825955,"remaining_time":0.06400114468},
{"learn":[0.04148386654],"iteration":943,"passed_time":1.060061917,"remaining_time":0.062885029},
{"learn":[0.04147094388],"iteration":944,"passed_time":1.061155856,"remaining_time":0.06176039375},
{"learn":[0.04144064545],"iteration":945,"passed_time":1.062299918,"remaining_time":0.06063868451},
{"learn":[0.04142208508],"iteration":946,"passed_time":1.063447039,"remaining_time":0.05951709936},
{"learn":[0.04140746759],"iteration":947,"passed_time":1.064565809,"remaining_time":0.05839390512},
{"learn":[0.04139434916],"iteration":948,"passed_time":1.065726438,"remaining_time":0.0572729698},
{"learn":[0.04138179403],"iteration":949,"passed_time":1.066876437,"remaining_time":0.05615139143},
{"learn":[0.04135492707],"iteration":950,"passed_time":1.068029483,"remaining_time":0.05502991029},
{"learn":[0.04134068406],"iteration":951,"passed_time":1.069106957,"remaining_time":0.05390455244},
{"learn":[0.04133010405],"iteration":952,"passed_time":1.0701732,"remaining_time":0.05277874123},
{"learn":[0.04132360136],"iteration":953,"passed_time":1.071275906,"remaining_time":0.05165481309},
{"learn":[0.04130293811],"iteration":954,"passed_time":1.07240345,"remaining_time":0.05053209972},
{"learn":[0.04127351458],"iteration":955,"passed_time":1.073479614,"remaining_time":0.04940701154},
{"learn":[0.04125529805],"iteration":956,"passed_time":1.074570762,"remaining_time":0.04828269882},
{"learn":[0.04123808836],"iteration":957,"passed_time":1.075703843,"remaining_time":0.04716029376},
{"learn":[0.04121813538],"iteration":958,"passed_time":1.076841548,"remaining_time":0.04603806409},
{"learn":[0.04119112486],"iteration":959,"passed_time":1.077927345,"remaining_time":0.04491363938},
{"learn":[0.04116580303],"iteration":960,"passed_time":1.079063889,"remaining_time":0.0437913545},
{"learn":[0.04115484949],"iteration":961,"passed_time":1.080180176,"remaining_time":0.04266823981},
{"learn":[0.04113725462],"iteration":962,"passed_time":1.081303501,"remaining_time":0.04154540968},
{"learn":[0.04113105952],"iteration":963,"passed_time":1.08246315,"remaining_time":0.04042393507},
{"learn":[0.04110585863],"iteration":964,"passed_time":1.083575273,"remaining_time":0.03930065756},
{"learn":[0.04108574807],"iteration":965,"passed_time":1.084665898,"remaining_time":0.03817664653},
{"learn":[0.0410765371],"iteration":966,"passed_time":1.085857759,"remaining_time":0.03705615931},
{"learn":[0.04103878629],"iteration":967,"passed_time":1.086968127,"remaining_time":0.03593283065},
{"learn":[0.04102536761],"iteration":968,"passed_time":1.088123752,"remaining_time":0.0348109766},
{"learn":[0.04099824472],"iteration":969,"passed_time":1.08924336,"remaining_time":0.03368793896},
{"learn":[0.04098426509],"iteration":970,"passed_time":1.090316927,"remaining_time":0.03256353335},
{"learn":[0.04096742773],"iteration":971,"passed_time":1.091384689,"remaining_time":0.0314390651},
{"learn":[0.04094906723],"iteration":972,"passed_time":1.092494252,"remaining_time":0.03031587338},
{"learn":[0.04092975371],"iteration":973,"passed_time":1.093641247,"remaining_time":0.02919370884},
{"learn":[0.04091653707],"iteration":974,"passed_time":1.094762904,"remaining_time":0.02807084369},
{"learn":[0.04090045082],"iteration":975,"passed_time":1.095847153,"remaining_time":0.02694706114},
{"learn":[0.04088152182],"iteration":976,"passed_time":1.09701256,"remaining_time":0.02582527008},
{"learn":[0.04087152155],"iteration":977,"passed_time":1.098123028,"remaining_time":0.024702154},
{"learn":[0.04086187675],"iteration":978,"passed_time":1.099271496,"remaining_time":0.02357987886},
{"learn":[0.04085344259],"iteration":979,"passed_time":1.100390531,"remaining_time":0.02245694961},
{"learn":[0.04083816968],"iteration":980,"passed_time":1.101520351,"rema,
{"learn":[0.03998544253],
{"learn":[0.0408159727],"iteration":981,"passed_time":1.10264673,"remai,
{"learn":[0.03996729383,
{"learn":[0.04080336221],"iteration":982,"passed_time":1.103725636,"remai,
{"learn":[0.0399282651,
{"learn":[0.04079763439],"iteration":983,"passed_time":1.104806484,"remai,
{"learn":[0.03991738613,
{"learn":[0.04078799272],"iteration":984,"passed_time":1.105864895,"remai,
{"learn":[0.03990685097,
{"learn":[0.0407716475],"iteration":985,"passed_time":1.107038701,"remain,
{"learn":[0.0398655946,
{"learn":[0.04076391766],"iteration":986,"passed_time":1.10818504,"remaini,
{"learn":[0.039855350,
{"learn":[0.04073621864],"iteration":987,"passed_time":1.109305274,"remaini,
{"learn":[0.039838889,
{"learn":[0.04072161239],"iteration":988,"passed_time":1.110475141,"remaini,
{"learn":[0.039797228,
{"learn":[0.04069682638],"iteration":989,"passed_time":1.111569747,"remaini,
{"learn":[0.039769119,
{"learn":[0.04068342313],"iteration":990,"passed_time":1.112756054,"remain,
{"learn":[0.0397481935,
{"learn":[0.0406589712],"iteration":991,"passed_time":1.113854828,"remaini,
{"learn":[0.0397258356,
{"learn":[0.04064601042],"iteration":992,"passed_time":1.115015015,"remaini,
{"learn":[0.0397138928,
{"learn":[0.0406368634],"iteration":993,"passed_time":1.116177777,"remainin,
{"learn":[0.039690001,
{"learn":[0.04061845354],"iteration":994,"passed_time":1.117286337,"remainin,
{"learn":[0.039672679,
{"learn":[0.04060324182],"iteration":995,"passed_time":1.118443373,"remainin,
{"learn":[0.039655896,
{"learn":[0.04058575971],"iteration":996,"passed_time":1.119494061,"remainin,
{"learn":[0.039632669,
{"learn":[0.04057323261],"iteration":997,"passed_time":1.120660833,"remaini,
{"learn":[0.0395988867,
{"learn":[0.04055261456],"iteration":998,"passed_time":1.121804299,"remain,
{"learn":[0.0395826349],
{"learn":[0.04054356436],"iteration":999,"passed_time":1.122834763,"remaining_time":0}
]}
\ No newline at end of file
iter RMSE
0 0.2634930983
1 0.253410861
2 0.2438490327
3 0.2348564906
4 0.2262217852
5 0.2179621507
6 0.2099580794
7 0.2027786939
8 0.1957826204
9 0.1892058504
10 0.1827568156
11 0.176781011
12 0.1713163733
13 0.1657838877
14 0.1606202362
15 0.1557479063
16 0.1514837694
17 0.1471266051
18 0.1433408142
19 0.139479269
20 0.1358926662
21 0.1323209643
22 0.1289255371
23 0.1258959934
24 0.1230355649
25 0.120546281
26 0.1181934737
27 0.115822833
28 0.1136284311
29 0.111502889
30 0.1094919865
31 0.1076723822
32 0.1060015476
33 0.1043769365
34 0.1028133138
35 0.1014498222
36 0.1000545332
37 0.09891068665
38 0.09766513557
39 0.09659213387
40 0.09562108466
41 0.09466091033
42 0.09385268939
43 0.09298788863
44 0.09234050158
45 0.09143054051
46 0.09082557962
47 0.09020965997
48 0.08964034695
49 0.08897707533
50 0.08829656708
51 0.08767118378
52 0.0870048701
53 0.08647536524
54 0.08608363476
55 0.0856352457
56 0.08519791788
57 0.08484662922
58 0.08449794257
59 0.08407515952
60 0.08380004489
61 0.08353298312
62 0.08329583674
63 0.08297578691
64 0.08264896504
65 0.08245568656
66 0.08228713242
67 0.08203906992
68 0.08169533113
69 0.08149367476
70 0.08124983623
71 0.0811358093
72 0.08099095381
73 0.08079867295
74 0.08052402426
75 0.08028272418
76 0.08016809994
77 0.07998524963
78 0.07973721768
79 0.07963970943
80 0.07950279118
81 0.07937744156
82 0.07915544766
83 0.07899744549
84 0.07886199028
85 0.07880740166
86 0.0786895054
87 0.07857613754
88 0.07848317975
89 0.07831429294
90 0.0781428239
91 0.07795031018
92 0.0778484655
93 0.07780504321
94 0.07763279973
95 0.07748548907
96 0.07733804358
97 0.07717508045
98 0.07713162441
99 0.0768757409
100 0.07673236925
101 0.07664926656
102 0.07653481994
103 0.07633559838
104 0.07620647641
105 0.07603871621
106 0.07588740911
107 0.0757699586
108 0.07562060896
109 0.07556604622
110 0.07541681729
111 0.07534426222
112 0.07526223468
113 0.07516521336
114 0.0750118418
115 0.07486827149
116 0.07468783537
117 0.07455614772
118 0.07443975193
119 0.07434605216
120 0.0742050227
121 0.07406997988
122 0.07397918601
123 0.07380644402
124 0.07369524688
125 0.07366510473
126 0.0735577393
127 0.07346552314
128 0.07339294965
129 0.07332135786
130 0.0732183539
131 0.073141875
132 0.07301526617
133 0.07290974481
134 0.07277821121
135 0.07272172031
136 0.07256581515
137 0.07243162048
138 0.07230257433
139 0.07225085897
140 0.07217072418
141 0.07207159475
142 0.07199175312
143 0.07184637184
144 0.07178050251
145 0.07162490598
146 0.0714867788
147 0.0713803598
148 0.0712862912
149 0.07119641351
150 0.07109176872
151 0.07098803424
152 0.0708774591
153 0.07075128849
154 0.07064690498
155 0.07055961332
156 0.07047510995
157 0.07040718046
158 0.07035503488
159 0.07033878947
160 0.07020977693
161 0.07011059331
162 0.07005554013
163 0.06994417976
164 0.06982165237
165 0.06970169409
166 0.06956146491
167 0.06943595787
168 0.06932713215
169 0.06926235625
170 0.06918194972
171 0.06914834282
172 0.06905506101
173 0.0689495828
174 0.06883819708
175 0.0687292749
176 0.06869917562
177 0.06857113617
178 0.06853066896
179 0.06844072759
180 0.06840705288
181 0.06829472981
182 0.06824988231
183 0.06816270697
184 0.06804463358
185 0.06794479904
186 0.06786359331
187 0.06775561095
188 0.06765344089
189 0.06758135377
190 0.06748952648
191 0.0673958693
192 0.06730288722
193 0.06720343649
194 0.06713914764
195 0.06704147945
196 0.06696258341
197 0.06690481521
198 0.06683505377
199 0.0667784863
200 0.06673936651
201 0.06666677002
202 0.06656692084
203 0.06646586866
204 0.06639012774
205 0.06629980314
206 0.06623695397
207 0.06614833052
208 0.06611926868
209 0.06603393382
210 0.06593194447
211 0.06583738886
212 0.06575186755
213 0.06570512504
214 0.06563020344
215 0.06555222048
216 0.06548567169
217 0.0654224923
218 0.0653819596
219 0.06530917557
220 0.06523862764
221 0.06519252689
222 0.06511259265
223 0.06505532183
224 0.06501443203
225 0.06495780192
226 0.06489287319
227 0.06481774526
228 0.06478879951
229 0.06469288367
230 0.06462023988
231 0.06455049453
232 0.0644636016
233 0.06437288188
234 0.06431911098
235 0.06424936683
236 0.06418371999
237 0.06412103588
238 0.06404117517
239 0.06401177802
240 0.06396078974
241 0.0639113989
242 0.06384367262
243 0.06376111488
244 0.06370713787
245 0.06364330028
246 0.06360358568
247 0.06355197111
248 0.063492282
249 0.06342088713
250 0.06334272782
251 0.06327700216
252 0.06320442537
253 0.06315172203
254 0.06308524062
255 0.06304720367
256 0.06298503788
257 0.06290172841
258 0.06287287605
259 0.06284563511
260 0.0627902083
261 0.06270549193
262 0.06268125256
263 0.06262602107
264 0.06257048344
265 0.06253544136
266 0.0624560189
267 0.06240219353
268 0.06235657763
269 0.06231299926
270 0.06228902811
271 0.06222695027
272 0.06220377711
273 0.06213011839
274 0.06205852506
275 0.06200683656
276 0.06193935167
277 0.06188133289
278 0.06178807417
279 0.06174660787
280 0.06169750262
281 0.06163033387
282 0.06158731137
283 0.06152892746
284 0.06147192
285 0.06142287868
286 0.06134871113
287 0.06130411873
288 0.06125339492
289 0.06118188503
290 0.06112443857
291 0.06107670024
292 0.06101364177
293 0.06094963226
294 0.06088229021
295 0.06082101932
296 0.06075612715
297 0.06069378228
298 0.0606344086
299 0.06060041731
300 0.06055984757
301 0.06050417954
302 0.06046305458
303 0.06042339923
304 0.06038414893
305 0.06032371585
306 0.06028531968
307 0.06024319979
308 0.06021294263
309 0.06016083523
310 0.06013157058
311 0.06008657151
312 0.06004536618
313 0.06000717474
314 0.05997655225
315 0.05993263873
316 0.05987336027
317 0.05983084147
318 0.05980133657
319 0.05977175971
320 0.05974352719
321 0.05970934033
322 0.05966119856
323 0.05963260188
324 0.05959957718
325 0.0595676946
326 0.05948929965
327 0.05944967222
328 0.05939796683
329 0.05935859012
330 0.0593099413
331 0.05926413151
332 0.05921250582
333 0.0591740177
334 0.05912573474
335 0.05909094261
336 0.05906318815
337 0.05903582828
338 0.05900903992
339 0.0589334691
340 0.0588969482
341 0.05886170319
342 0.05882768617
343 0.05878055577
344 0.05875722932
345 0.05871226529
346 0.05867930551
347 0.05862267262
348 0.05858667447
349 0.0585165601
350 0.05849383796
351 0.05842268957
352 0.05837886592
353 0.05834686688
354 0.05832070484
355 0.05826754507
356 0.058192672
357 0.05816517132
358 0.0581385265
359 0.05808953698
360 0.05804870012
361 0.05796623229
362 0.05792499328
363 0.05788445054
364 0.05781702758
365 0.05775467173
366 0.05767061235
367 0.0576086508
368 0.05754986946
369 0.05748264121
370 0.05742755808
371 0.05737380118
372 0.05732165607
373 0.05728366674
374 0.05721670406
375 0.05718669562
376 0.0571637167
377 0.05711845564
378 0.0570521628
379 0.05700310341
380 0.05698225953
381 0.0569311618
382 0.05686894086
383 0.05682253351
384 0.05677412709
385 0.05671880777
386 0.0567022711
387 0.05667157184
388 0.05661847972
389 0.05657499345
390 0.05652887885
391 0.05649981209
392 0.05646781524
393 0.05642091602
394 0.05637667477
395 0.05633185007
396 0.05626845363
397 0.05623295471
398 0.05620502812
399 0.0561780337
400 0.05614179057
401 0.05608377234
402 0.056056743
403 0.05602713807
404 0.05597161087
405 0.05590425916
406 0.05587899311
407 0.05584219619
408 0.05580750835
409 0.05574861471
410 0.05570531356
411 0.05568008721
412 0.0556498927
413 0.05563280496
414 0.05560815826
415 0.05556134435
416 0.05553537642
417 0.05548025926
418 0.05544445929
419 0.05537612403
420 0.05533415698
421 0.05527055426
422 0.05524190754
423 0.0552100861
424 0.05515736399
425 0.05510316002
426 0.05506501574
427 0.0549934467
428 0.05497778474
429 0.05495011465
430 0.05491822731
431 0.05487901793
432 0.05485247447
433 0.05482042453
434 0.05478619582
435 0.05475667458
436 0.05470705862
437 0.05466457891
438 0.05463794859
439 0.054601151
440 0.05456267133
441 0.05453450513
442 0.05450339784
443 0.05444698872
444 0.05440289405
445 0.05435331008
446 0.05432216091
447 0.05429223652
448 0.0542574428
449 0.05422342009
450 0.05418132901
451 0.05414570345
452 0.05412054612
453 0.05409458146
454 0.05405529984
455 0.05403053006
456 0.05398300394
457 0.05393454163
458 0.05390897771
459 0.0538847537
460 0.05386021513
461 0.05383632978
462 0.05379124587
463 0.05374598193
464 0.05371901864
465 0.05370411935
466 0.05366838457
467 0.05365479959
468 0.05363104746
469 0.0536078883
470 0.05357575209
471 0.05354779953
472 0.05347677186
473 0.05345638105
474 0.05344159334
475 0.05342214405
476 0.05336880018
477 0.05335458429
478 0.05333205674
479 0.05331345108
480 0.05329979624
481 0.05327821941
482 0.05324539888
483 0.05323211103
484 0.05316266321
485 0.05312586054
486 0.0530812739
487 0.05304540022
488 0.05299832621
489 0.05297130394
490 0.05294043457
491 0.0529086768
492 0.05288066682
493 0.05280223529
494 0.05277310598
495 0.05274248466
496 0.05272228753
497 0.05267454
498 0.05263022826
499 0.05261091754
500 0.05257424505
501 0.05254810234
502 0.05250291159
503 0.05246940214
504 0.05245089463
505 0.05240317629
506 0.052369071
507 0.05233408997
508 0.05230323226
509 0.05226220139
510 0.0522416407
511 0.05222178926
512 0.05217338387
513 0.05215268253
514 0.05212446682
515 0.05209976028
516 0.05207227679
517 0.05203902264
518 0.05200080901
519 0.05195987036
520 0.05189872453
521 0.05187456804
522 0.0518424625
523 0.05182260323
524 0.05180385102
525 0.05178247935
526 0.05172503482
527 0.05168601846
528 0.051652093
529 0.05160675853
530 0.0515633798
531 0.05154622666
532 0.05151399665
533 0.05148163248
534 0.05146974019
535 0.05142947581
536 0.05141114663
537 0.05138492558
538 0.05131187932
539 0.05130031152
540 0.05128251251
541 0.05124862522
542 0.05123064838
543 0.05121330323
544 0.05119757858
545 0.05118086755
546 0.05115592676
547 0.05111108194
548 0.05106862787
549 0.0510511961
550 0.05103509025
551 0.05099885242
552 0.05098379059
553 0.05095861523
554 0.05092860632
555 0.05089144134
556 0.05086161462
557 0.05083269047
558 0.05081574245
559 0.0507840014
560 0.05076708548
561 0.05074324313
562 0.05072794106
563 0.05069280572
564 0.05066895545
565 0.05062914781
566 0.05057548711
567 0.05054120645
568 0.0505207669
569 0.05050509257
570 0.0504912546
571 0.05047676852
572 0.05044969849
573 0.05041880655
574 0.05040396898
575 0.05039442234
576 0.05037351687
577 0.05034672275
578 0.05029519314
579 0.05024571568
580 0.05022623046
581 0.05021226856
582 0.05019201266
583 0.05016742651
584 0.050154573
585 0.0501375031
586 0.05012437702
587 0.05009352592
588 0.05007509722
589 0.05005918981
590 0.05004707025
591 0.05003852008
592 0.05000498489
593 0.04995569866
594 0.04992577361
595 0.04989640768
596 0.04986062562
597 0.04982529354
598 0.04977953539
599 0.04973460752
600 0.04971676935
601 0.04970471962
602 0.04968703619
603 0.04966537961
604 0.0496310801
605 0.0496112634
606 0.04958591822
607 0.04956369772
608 0.04952161345
609 0.04951001574
610 0.0494690954
611 0.04943858066
612 0.04940574285
613 0.04938404307
614 0.04936161019
615 0.04933006071
616 0.04930894025
617 0.04927093337
618 0.0492539502
619 0.04921527637
620 0.04919073409
621 0.04917106071
622 0.04913192626
623 0.04909434229
624 0.04906347224
625 0.04902947428
626 0.04900000223
627 0.04897405963
628 0.04894495833
629 0.04893668707
630 0.04892243028
631 0.04889696679
632 0.04886273901
633 0.04883550951
634 0.04880750303
635 0.04878571887
636 0.04876259654
637 0.0487515373
638 0.04870316411
639 0.04868566279
640 0.0486117139
641 0.04857691631
642 0.04856901499
643 0.04855004172
644 0.04853162896
645 0.0485000216
646 0.04848006142
647 0.04846870279
648 0.04843310661
649 0.0484068178
650 0.04838981337
651 0.04836700645
652 0.04835326852
653 0.04833138229
654 0.04830084897
655 0.04828627767
656 0.04824872165
657 0.0482118687
658 0.04818637782
659 0.04816142488
660 0.04813154764
661 0.04810089776
662 0.04806434653
663 0.0480421926
664 0.04802428491
665 0.04799166896
666 0.04798415592
667 0.04794919922
668 0.04792658069
669 0.04783709993
670 0.04781033793
671 0.04779984302
672 0.04773094433
673 0.04767335436
674 0.04765766665
675 0.04765047298
676 0.04764102169
677 0.04762257954
678 0.04761230795
679 0.04755734518
680 0.04753809842
681 0.04749551746
682 0.04747913775
683 0.04743891167
684 0.04736938779
685 0.047345942
686 0.04731626271
687 0.04730940373
688 0.04724350218
689 0.0472144353
690 0.04718701294
691 0.04716366813
692 0.04714382715
693 0.04712877313
694 0.04710467136
695 0.0470257924
696 0.04700314362
697 0.04697725198
698 0.04691697923
699 0.04689498692
700 0.04686742948
701 0.04684460551
702 0.04681552787
703 0.04679128989
704 0.04677124399
705 0.04674399361
706 0.04671481197
707 0.04669103764
708 0.04666508543
709 0.04665521609
710 0.04664570761
711 0.04662956626
712 0.04662292157
713 0.04660554855
714 0.04659637838
715 0.04658415937
716 0.04656613816
717 0.04654768151
718 0.04651977657
719 0.04649301235
720 0.04648661233
721 0.04645855784
722 0.04642565155
723 0.04639385029
724 0.04636737706
725 0.04634602446
726 0.04630920393
727 0.04629173443
728 0.0462725041
729 0.04623994276
730 0.04622078884
731 0.04620217043
732 0.04617746189
733 0.04613111467
734 0.04611037503
735 0.04605253887
736 0.04603621856
737 0.04599197289
738 0.04596783157
739 0.04595005464
740 0.04592678914
741 0.04591605654
742 0.0459017958
743 0.0458664223
744 0.04585773088
745 0.04584394216
746 0.04581926801
747 0.04578456017
748 0.0457650652
749 0.04570656502
750 0.04567819925
751 0.04565387521
752 0.04561834595
753 0.04560155767
754 0.04557942139
755 0.0455496426
756 0.04550938347
757 0.04547099272
758 0.04543342284
759 0.045417094
760 0.0454019336
761 0.04539401117
762 0.0453399417
763 0.04533225259
764 0.04531089985
765 0.04528955009
766 0.04526023921
767 0.0452442942
768 0.04521359939
769 0.04519096198
770 0.0451761666
771 0.04514879274
772 0.04513210101
773 0.04510860379
774 0.04508462212
775 0.04505578494
776 0.04503187725
777 0.04499891713
778 0.04498384215
779 0.04497045255
780 0.04492353019
781 0.04491255495
782 0.0448899462
783 0.04488264607
784 0.04486773261
785 0.04485128219
786 0.04481888866
787 0.04478842669
788 0.04475976661
789 0.04472355356
790 0.04469652162
791 0.04468182797
792 0.04465633892
793 0.04464204494
794 0.04462146897
795 0.0445810165
796 0.04456289259
797 0.04453824996
798 0.04451573925
799 0.04448122351
800 0.04446741322
801 0.04444484859
802 0.04443209294
803 0.04439631636
804 0.04437476871
805 0.04434796616
806 0.04432739374
807 0.04429038228
808 0.04426139463
809 0.04424471838
810 0.04421234456
811 0.0441793486
812 0.04415636799
813 0.04412181627
814 0.04410475357
815 0.04408502358
816 0.04406188451
817 0.04404229112
818 0.04402088562
819 0.04400505725
820 0.0439758257
821 0.04394538032
822 0.0439281695
823 0.04391094098
824 0.04386703155
825 0.04384626503
826 0.04383896926
827 0.04383191305
828 0.04381439683
829 0.04380059056
830 0.04378534507
831 0.0437596593
832 0.04371346993
833 0.04369903699
834 0.04367011698
835 0.04364704372
836 0.04363688343
837 0.04363014016
838 0.04360997453
839 0.04358272975
840 0.04355575644
841 0.04353332199
842 0.04351631152
843 0.04349580903
844 0.04345177857
845 0.04343528498
846 0.04340847822
847 0.04338566099
848 0.04336493004
849 0.04334938601
850 0.04333487311
851 0.04332138778
852 0.04330077157
853 0.04328448024
854 0.04325236846
855 0.04323609001
856 0.0432230608
857 0.04320829683
858 0.04318863037
859 0.04317767235
860 0.04314792309
861 0.04312981527
862 0.04309018204
863 0.04307572642
864 0.04304123882
865 0.04302150085
866 0.04297149805
867 0.04295513953
868 0.04293372746
869 0.04291872015
870 0.04290034979
871 0.04288295606
872 0.04284226648
873 0.0428294659
874 0.04281302218
875 0.04279536673
876 0.04277866089
877 0.04276271
878 0.04273927084
879 0.04272044087
880 0.04268494791
881 0.04266244749
882 0.04264360609
883 0.04262471932
884 0.04259803687
885 0.04258263899
886 0.04255795971
887 0.04254566744
888 0.04252980116
889 0.04250884212
890 0.0424964575
891 0.04248132396
892 0.04246742747
893 0.04243631774
894 0.04241610857
895 0.0423946179
896 0.04237419347
897 0.04235460165
898 0.04234247983
899 0.0423320518
900 0.04231309828
901 0.04229669972
902 0.04226972675
903 0.04223343689
904 0.04220561561
905 0.042195177
906 0.04215341348
907 0.04214481199
908 0.04212654962
909 0.042104943
910 0.04207614613
911 0.04205124527
912 0.04202761323
913 0.04200430334
914 0.04198287385
915 0.04195749518
916 0.04194335257
917 0.04192241487
918 0.04190883066
919 0.04189577631
920 0.04187665658
921 0.0418553006
922 0.0418441153
923 0.04182985993
924 0.04180051843
925 0.04177732328
926 0.0417512722
927 0.0417330868
928 0.04171782144
929 0.04170212428
930 0.04168611882
931 0.04167486515
932 0.04166403636
933 0.04164949755
934 0.04162848084
935 0.04161218675
936 0.04159204351
937 0.04158160705
938 0.04156222298
939 0.04154995366
940 0.04152435136
941 0.04151462762
942 0.04150526937
943 0.04148386654
944 0.04147094388
945 0.04144064545
946 0.04142208508
947 0.04140746759
948 0.04139434916
949 0.04138179403
950 0.04135492707
951 0.04134068406
952 0.04133010405
953 0.04132360136
954 0.04130293811
955 0.04127351458
956 0.04125529805
957 0.04123808836
958 0.04121813538
959 0.04119112486
960 0.04116580303
961 0.04115484949
962 0.04113725462
963 0.04113105952
964 0.04110585863
965 0.04108574807
966 0.0410765371
967 0.04103878629
968 0.04102536761
969 0.04099824472
970 0.04098426509
971 0.04096742773
972 0.04094906723
973 0.04092975371
974 0.04091653707
975 0.04090045082
976 0.04088152182
977 0.04087152155
978 0.04086187675
979 0.04085344259
980 0.04083816968
981 0.0408159727
982 0.04080336221
983 0.04079763439
984 0.04078799272
985 0.0407716475
986 0.04076391766
987 0.04073621864
988 0.04072161239
989 0.04069682638
990 0.04068342313
991 0.0406589712
992 0.04064601042
993 0.0406368634
994 0.04061845354
995 0.04060324182
996 0.04058575971
997 0.04057323261
998 0.04055261456
999 0.04054356436
03959888677
999 0.0395826349
iter Passed Remaining
0 1 1259
1 2 1197
2 3 1179
3 4 1170
4 5 1159
5 7 1165
6 8 1146
7 9 1144
8 10 1133
9 11 1126
10 12 1128
11 13 1127
12 14 1127
13 15 1125
14 17 1118
15 18 1114
16 19 1113
17 20 1112
18 21 1116
19 22 1109
20 23 1108
21 24 1105
22 25 1101
23 27 1099
24 28 1099
25 29 1098
26 30 1098
27 31 1096
28 32 1095
29 33 1094
30 35 1094
31 36 1092
32 37 1089
33 38 1088
34 39 1087
35 40 1087
36 41 1086
37 42 1085
38 44 1086
39 45 1086
40 46 1086
41 47 1085
42 48 1083
43 49 1082
44 50 1080
45 52 1079
46 53 1080
47 54 1078
48 55 1076
49 56 1074
50 57 1073
51 58 1071
52 59 1070
53 61 1069
54 62 1068
55 63 1065
56 64 1064
57 65 1061
58 66 1060
59 67 1059
60 68 1059
61 69 1058
62 71 1058
63 72 1056
64 73 1057
65 74 1056
66 75 1055
67 76 1054
68 78 1053
69 79 1053
70 80 1051
71 81 1051
72 82 1051
73 83 1050
74 85 1049
75 86 1048
76 87 1047
77 88 1046
78 89 1044
79 90 1044
80 91 1043
81 93 1041
82 94 1040
83 95 1039
84 96 1038
85 97 1037
86 98 1036
87 99 1034
88 101 1034
89 102 1033
90 103 1033
91 104 1031
92 105 1029
93 106 1028
94 107 1026
95 108 1024
96 109 1024
97 111 1022
98 112 1021
99 113 1020
100 114 1019
101 115 1017
102 116 1015
103 117 1014
104 118 1012
105 119 1011
106 121 1010
107 122 1008
108 123 1006
109 124 1006
110 125 1005
111 126 1003
112 127 1002
113 128 1001
114 129 999
115 131 998
116 132 996
117 133 995
118 134 994
119 135 993
120 136 992
121 137 991
122 138 990
123 140 989
124 141 988
125 142 987
126 143 986
127 144 985
128 145 984
129 146 983
130 148 982
131 149 980
132 150 979
133 151 977
134 152 977
135 153 975
136 154 974
137 155 973
138 156 972
139 158 971
140 159 970
141 160 969
142 161 967
143 162 966
144 163 965
145 164 964
146 166 963
147 167 961
148 168 960
149 169 959
150 170 958
151 171 957
152 172 956
153 173 954
154 174 953
155 175 951
156 177 950
157 178 949
158 179 948
159 180 946
160 181 944
161 182 943
162 183 942
163 184 941
164 185 940
165 186 939
166 188 938
167 189 937
168 190 935
169 191 934
170 192 933
171 193 932
172 194 930
173 195 929
174 196 928
175 198 927
176 199 926
177 200 925
178 201 924
179 202 923
180 203 922
181 204 920
182 206 919
183 207 918
184 208 917
185 209 915
186 210 914
187 211 913
188 212 911
189 213 910
190 214 909
191 215 908
192 217 907
193 218 906
194 219 905
195 220 904
196 221 902
197 222 901
198 223 900
199 224 899
200 226 898
201 227 897
202 228 896
203 229 895
204 230 894
205 231 893
206 232 892
207 234 891
208 235 890
209 236 888
210 237 887
211 238 886
212 239 884
213 240 883
214 241 882
215 242 881
216 243 880
217 245 878
218 246 877
219 247 876
220 248 875
221 249 874
222 250 872
223 251 871
224 252 870
225 253 869
226 254 868
227 256 866
228 257 865
229 258 864
230 259 863
231 260 862
232 261 861
233 262 860
234 263 859
235 265 858
236 266 857
237 267 855
238 268 854
239 269 853
240 270 852
241 271 851
242 272 849
243 274 848
244 275 847
245 276 846
246 277 845
247 278 844
248 279 843
249 280 842
250 281 841
251 282 839
252 284 838
253 285 837
254 286 836
255 287 835
256 288 834
257 289 832
258 290 831
259 291 830
260 293 829
261 294 828
262 295 827
263 296 826
264 297 825
265 298 824
266 299 823
267 300 821
268 302 820
269 303 819
270 304 818
271 305 817
272 306 816
273 307 815
274 308 814
275 309 813
276 311 811
277 312 810
278 313 809
279 314 808
280 315 807
281 316 806
282 317 805
283 318 804
284 320 803
285 321 802
286 322 801
287 323 800
288 324 799
289 326 798
290 327 796
291 328 795
292 329 795
293 330 793
294 331 792
295 332 791
296 334 790
297 335 789
298 336 788
299 337 787
300 338 786
301 339 784
302 340 783
303 341 782
304 342 781
305 344 780
306 345 779
307 346 778
308 347 777
309 348 776
310 349 775
311 351 774
312 352 772
313 353 771
314 354 770
315 355 769
316 356 768
317 357 767
318 358 766
319 360 765
320 361 764
321 362 763
322 363 762
323 364 761
324 365 760
325 367 758
326 368 757
327 369 756
328 370 755
329 371 754
330 372 753
331 373 751
332 374 750
333 375 749
334 376 748
335 378 747
336 379 746
337 380 744
338 381 743
339 382 742
340 383 741
341 384 740
342 385 739
343 387 738
344 388 737
345 389 735
346 390 734
347 391 733
348 392 732
349 393 731
350 395 730
351 396 729
352 397 728
353 398 726
354 399 725
355 400 724
356 401 723
357 402 722
358 403 720
359 404 719
360 405 718
361 407 717
362 408 716
363 409 715
364 410 714
365 411 713
366 412 712
367 413 710
368 415 710
369 416 708
370 417 707
371 418 706
372 419 705
373 420 704
374 422 703
375 423 702
376 424 701
377 425 700
378 426 699
379 427 698
380 428 696
381 430 695
382 431 694
383 432 693
384 433 692
385 434 691
386 435 690
387 436 688
388 437 687
389 439 686
390 440 685
391 441 684
392 442 683
393 443 682
394 444 681
395 445 679
396 446 678
397 447 677
398 449 676
399 450 675
400 451 674
401 452 672
402 453 671
403 454 670
404 455 669
405 456 668
406 457 667
407 459 666
408 460 665
409 461 663
410 462 662
411 463 661
412 464 660
413 465 659
414 466 658
415 467 656
416 469 655
417 470 654
418 471 653
419 472 652
420 473 651
421 475 650
422 476 649
423 477 648
424 478 647
425 479 645
426 480 644
427 481 643
428 482 642
429 483 641
430 485 640
431 486 639
432 487 638
433 488 636
434 489 635
435 490 634
436 491 633
437 492 632
438 493 631
439 495 630
440 496 629
441 497 627
442 498 626
443 499 625
444 500 624
445 502 623
446 503 622
447 504 621
448 505 620
449 506 619
450 507 617
451 508 616
452 509 615
453 510 614
454 512 613
455 513 612
456 514 611
457 515 609
458 516 608
459 517 607
460 518 606
461 519 605
462 520 604
463 521 602
464 523 601
465 524 600
466 525 599
467 526 598
468 527 597
469 528 596
470 529 595
471 530 593
472 532 592
473 533 591
474 534 590
475 535 589
476 536 588
477 537 586
478 538 585
479 539 584
480 540 583
481 541 582
482 542 581
483 544 579
484 545 578
485 546 577
486 547 576
487 548 575
488 549 574
489 550 573
490 551 571
491 552 570
492 553 569
493 555 568
494 556 567
495 557 566
496 558 565
497 559 564
498 560 562
499 561 561
500 562 560
501 563 559
502 565 558
503 566 557
504 567 556
505 568 554
506 569 553
507 570 552
508 571 551
509 572 550
510 574 549
511 575 548
512 576 547
513 577 546
514 578 545
515 579 543
516 580 542
517 582 541
518 583 540
519 584 539
520 585 538
521 586 537
522 587 536
523 588 534
524 589 533
525 591 532
526 592 531
527 593 530
528 594 529
529 595 528
530 596 527
531 597 525
532 599 524
533 600 523
534 601 522
535 602 521
536 603 520
537 604 519
538 606 518
539 607 517
540 608 516
541 609 515
542 610 513
543 611 512
544 612 511
545 613 510
546 615 509
547 616 508
548 617 507
549 618 505
550 619 504
551 620 503
552 621 502
553 622 501
554 623 500
555 625 499
556 626 498
557 627 496
558 628 495
559 629 494
560 630 493
561 631 492
562 632 491
563 634 490
564 635 489
565 636 487
566 637 486
567 638 485
568 639 484
569 640 483
570 642 482
571 643 481
572 644 480
573 645 479
574 646 477
575 647 476
576 648 475
577 649 474
578 650 473
579 651 472
580 653 470
581 654 469
582 655 468
583 656 467
584 657 466
585 658 465
586 659 464
587 660 463
588 661 461
589 663 460
590 664 459
591 665 458
592 666 457
593 667 456
594 668 455
595 669 454
596 670 452
597 672 451
598 673 450
599 674 449
600 675 448
601 676 447
602 677 446
603 678 445
604 679 443
605 680 442
606 682 441
607 683 440
608 684 439
609 685 438
610 686 437
611 687 435
612 688 434
613 689 433
614 691 432
615 692 431
616 693 430
617 694 429
618 695 428
619 696 427
620 697 425
621 699 424
622 700 423
623 701 422
624 702 421
625 703 420
626 704 419
627 705 418
628 706 416
629 708 415
630 709 414
631 710 413
632 711 412
633 712 411
634 713 410
635 714 409
636 715 407
637 716 406
638 718 405
639 719 404
640 720 403
641 721 402
642 722 401
643 723 400
644 724 398
645 726 397
646 727 396
647 728 395
648 729 394
649 730 393
650 731 392
651 732 391
652 733 389
653 735 388
654 736 387
655 737 386
656 738 385
657 739 384
658 740 383
659 741 382
660 742 380
661 743 379
662 745 378
663 746 377
664 747 376
665 748 375
666 749 374
667 750 373
668 751 371
669 752 370
670 753 369
671 754 368
672 756 367
673 757 366
674 758 365
675 759 363
676 760 362
677 761 361
678 762 360
679 763 359
680 764 358
681 766 357
682 767 356
683 768 354
684 769 353
685 770 352
686 771 351
687 772 350
688 773 349
689 775 348
690 776 347
691 777 345
692 778 344
693 779 343
694 780 342
695 781 341
696 782 340
697 783 339
698 784 337
699 785 336
700 787 335
701 788 334
702 789 333
703 790 332
704 791 331
705 792 329
706 793 328
707 794 327
708 796 326
709 797 325
710 798 324
711 799 323
712 800 322
713 801 321
714 802 319
715 803 318
716 804 317
717 805 316
718 807 315
719 808 314
720 809 313
721 810 312
722 811 310
723 812 309
724 813 308
725 814 307
726 816 306
727 817 305
728 818 304
729 819 303
730 820 301
731 821 300
732 822 299
733 823 298
734 825 297
735 826 296
736 827 295
737 828 294
738 829 292
739 830 291
740 831 290
741 832 289
742 834 288
743 835 287
744 836 286
745 837 285
746 838 283
747 839 282
748 841 281
749 842 280
750 843 279
751 844 278
752 845 277
753 846 276
754 848 275
755 849 274
756 850 272
757 851 271
758 852 270
759 853 269
760 854 268
761 855 267
762 857 266
763 858 265
764 859 263
765 860 262
766 861 261
767 862 260
768 863 259
769 865 258
770 866 257
771 867 256
772 868 255
773 869 254
774 871 252
775 872 251
776 873 250
777 874 249
778 875 248
779 876 247
780 877 246
781 878 245
782 880 243
783 881 242
784 882 241
785 883 240
786 884 239
787 885 238
788 886 237
789 888 236
790 889 234
791 890 233
792 891 232
793 892 231
794 893 230
795 894 229
796 895 228
797 897 227
798 898 225
799 899 224
800 900 223
801 901 222
802 902 221
803 903 220
804 904 219
805 906 218
806 907 216
807 908 215
808 909 214
809 910 213
810 911 212
811 912 211
812 914 210
813 915 209
814 916 207
815 917 206
816 918 205
817 919 204
818 920 203
819 921 202
820 923 201
821 924 200
822 925 199
823 926 197
824 927 196
825 928 195
826 929 194
827 930 193
828 932 192
829 933 191
830 934 190
831 935 188
832 936 187
833 937 186
834 938 185
835 939 184
836 941 183
837 942 182
838 943 181
839 944 179
840 945 178
841 946 177
842 947 176
843 948 175
844 949 174
845 951 173
846 952 171
847 953 170
848 954 169
849 955 168
850 956 167
851 957 166
852 958 165
853 959 164
854 960 162
855 962 161
856 963 160
857 964 159
858 965 158
859 966 157
860 967 156
861 968 155
862 969 153
863 970 152
864 971 151
865 972 150
866 974 149
867 975 148
868 976 147
869 977 146
870 978 144
871 979 143
872 980 142
873 981 141
874 983 140
875 984 139
876 985 138
877 986 137
878 987 135
879 988 134
880 989 133
881 990 132
882 991 131
883 992 130
884 993 129
885 994 128
886 996 126
887 997 125
888 998 124
889 999 123
890 1000 122
891 1001 121
892 1002 120
893 1003 119
894 1005 117
895 1006 116
896 1007 115
897 1008 114
898 1009 113
899 1010 112
900 1011 111
901 1012 110
902 1014 108
903 1015 107
904 1016 106
905 1017 105
906 1018 104
907 1019 103
908 1020 102
909 1021 101
910 1022 99
911 1023 98
912 1025 97
913 1026 96
914 1027 95
915 1028 94
916 1029 93
917 1030 92
918 1032 90
919 1033 89
920 1034 88
921 1035 87
922 1036 86
923 1037 85
924 1038 84
925 1039 83
926 1041 81
927 1042 80
928 1043 79
929 1044 78
930 1045 77
931 1046 76
932 1047 75
933 1048 74
934 1049 72
935 1051 71
936 1052 70
937 1053 69
938 1054 68
939 1055 67
940 1056 66
941 1057 65
942 1058 64
943 1060 62
944 1061 61
945 1062 60
946 1063 59
947 1064 58
948 1065 57
949 1066 56
950 1068 55
951 1069 53
952 1070 52
953 1071 51
954 1072 50
955 1073 49
956 1074 48
957 1075 47
958 1076 46
959 1077 44
960 1079 43
961 1080 42
962 1081 41
963 1082 40
964 1083 39
965 1084 38
966 1085 37
967 1086 35
968 1088 34
969 1089 33
970 1090 32
971 1091 31
972 1092 30
973 1093 29
974 1094 28
975 1095 26
976 1097 25
977 1098 24
978 1099 23
979 1100 22
980 1101 21
981 1102 20
982 1103 19
983 1104 17
984 1105 16
985 1107 15
986 1108 14
987 1109 13
988 1110 12
989 1111 11
990 1112 10
991 1113 8
992 1115 7
993 1116 6
994 1117 5
995 1118 4
996 1119 3
997 1120 2
998 1121 1
999 1122 0
997 1132 2
998 1133 1
999 1134 0
[LOGGING]
level = $LOG_LEVEL
traceback = $LOG_TRACEBACK
[MODULE]
name = $APP_NAME
[KAIROS_DB]
uri=$KAIROS_URI
metric_name=$KAIROS_METRIC
aggregator=$AGGREGATOR
aggregator_value=$AGGREGATOR_VALUE
aggregator_unit=$AGGREGATOR_UNIT
[KAFKA]
kafka_host=$KAFKA_HOST
kafka_port=$KAFKA_PORT
kafka_topic=$KAFKA_TOPIC
[DATE_RANGE]
start_date=$START_DATE
end_date=$END_DATE
start_relative_days=$START_RELATIVE
end_relative_days=$END_RELATIVE
[EMAIL_DETAILS]
email_reciever=$RECIEVER_EMAIL
email_sender=$SENDER_EMAIL
[MONGO]
mongo_uri=$MONGO_URI
[TIMEZONE]
required_tz=$REQUIRED_TZ
[MLFLOW]
mlflow_tracking_uri=$MLFLOW_TRACKING_URI
mlflow_tracking_username=$MLFLOW_TRACKING_USERNAME
mlflow_tracking_password=$MLFLOW_TRACKING_PASSWORD
azure_storage_connection_string=$AZURE_STORAGE_CONNECTION_STRING
azure_storage_access_key=$AZURE_STORAGE_ACCESS_KEY
user=$USER
experiment_name=$EXPERIMENT_NAME
run_name=$RUN_NAME
model_name=$MODEL_NAME
check_param=$CHECK_PARAM
model_check_param=$MODEL_CHECK_PARAM
[PYCARET]
models_list=$MODELS_LIST
selected_metric=$SELECTED_METRIC
hyperparameter_tuning_method=$HYPERPARAMETER_TUNING_METHOD
inv_list:
- inv_1
- inv_2
- inv_3
- inv_4
- inv_5
- inv_6
- inv_7
- inv_8
- inv_9
- inv_10
- inv_11
- inv_12
- inv_13
- inv_14
- inv_15
- inv_16
- inv_17
- inv_18
- inv_19
- inv_20
- inv_21
- inv_22
- inv_23
- inv_24
- inv_25
- inv_26
- inv_27
- inv_28
- inv_29
- inv_30
- inv_31
- inv_32
- inv_33
- inv_34
- inv_35
- inv_36
- inv_37
- inv_38
- inv_39
- inv_40
- inv_41
- inv_42
tag_heirarcy:
D1D001_consumptions_Opening_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6452
source: calculated
dependency:
- D1D001_consumptions_Closing_DPR
D1D001_consumptions_Day_Cons_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6456
source: calculated
dependency:
- D1D001_consumptions_Opening_DPR
- D1D001_consumptions_Day_Receipt_DPR
- D1D001_consumptions_Day_Recovery_DPR
- D1D001_consumptions_Closing_DPR
7302011030_Consumptions_Opening_DPR:
column_tag: site_116$dept_134$line_350$equipment_4299$tag_6487
source: calculated
dependency:
- 7302011030_Consumptions_Closing_DPR
7302011030_Consumptions_Day_Cons_DPR:
column_tag: site_116$dept_134$line_350$equipment_4299$tag_6490
source: calculated
dependency:
- D1D001_consumptions_Opening_DPR
- D1D001_consumptions_Day_Receipt_DPR
- D1D001_consumptions_Day_Recovery_DPR
- D1D001_consumptions_Closing_DPR
7302011030_Consumptions_Closing_DPR:
column_tag: site_116$dept_134$line_350$equipment_4299$tag_6491
source: manual
dependency:
- None
7302011061_Consumption_Opening_DPR:
column_tag: site_116$dept_134$line_350$equipment_4302$tag_6492
source: calculated
dependency:
- 7302011061_Consumption_Closing_DPR
Crude_Prod_Day_Prod_DPR:
column_tag: site_116$dept_134$line_350$equipment_4305$tag_6460
source: calculated
dependency:
- D1D001_consumptions_Day_Cons_DPR
- D1D001Readings_Conv_DPR
Pure_Production_Opening_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6497
source: calculated
dependency:
- Pure_Production_Closing_of_Pure_Tanks_only_DPR
Pure_Production_Day_Prod_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6496
source: calculated
dependency:
- Crude_Prod_Day_Prod_DPR
Utility_report_Power_Norms:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6470
source: calculated
dependency:
- Utility_report_Day_Power
- Crude_Prod_Day_Prod_DPR
Utility_report_Steam_Norms:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6471
source: calculated
dependency:
- Utility_report_Day_Steam
- Crude_Prod_Day_Prod_DPR
Utility_report_Raffinate_Norms:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6472
source: calculated
dependency:
- Utility_report_Day_Raffinate
- Crude_Prod_Day_Prod_DPR
Utility_report_Raffinate_Vent_Gas:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6473
source: calculated
dependency:
- Utility_report_Vent_Gas_Raffinate
- Crude_Prod_Day_Prod_DPR
Utility_report_Raw_Water_Norms:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6474
source: calculated
dependency:
- Utility_report_Day_Treated_Water
- Crude_Prod_Day_Prod_DPR
Utility_report_per_hr_burn_rate:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6483
source: calculated
dependency:
- Utility_report_Raffinate_Incinerated
D1D001Readings_T_2703_A_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6447
source: manual
dependency: None
D1D001Readings_T_2703_B_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6448
source: manual
dependency: None
D1D001Readings_Conv_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6451
source: manual
dependency: None
D1D001_consumptions_Day_Receipt_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6453
source: manual
dependency: None
D1D001_consumptions_Day_Recovery_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6454
source: calculated_depends_previous_value
dependency: None
7302011030_Consumptions_Day_Receipt_DPR:
column_tag: site_116$dept_134$line_350$equipment_4299$tag_6488
source: manual
dependency: None
7302011061_Consumption_Day_Receipt_DPR:
column_tag: site_116$dept_134$line_350$equipment_4302$tag_6493
source: manual
dependency: None
7302011061_Consumption_Day_Cons_DPR:
column_tag: site_116$dept_134$line_350$equipment_4302$tag_6459
source: manual
dependency: None
Pure_Production_Day_Nia_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6462
source: manual
dependency: None
Pure_Production_Day_Drum_Filling_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6464
source: manual
dependency: None
Pure_Production_Pure_tank_Dead_Volumes_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6469
source: manual
dependency: None
Utility_report_Day_Power:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6475
source: manual
dependency: None
Utility_report_Day_Steam:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6477
source: manual
dependency: None
Utility_report_Day_Raffinate:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6478
source: manual
dependency: None
Utility_report_Vent_Gas_Raffinate:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6479
source: manual
dependency: None
Utility_report_Day_DM:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6480
source: manual
dependency: None
Utility_report_Day_Treated_Water:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6481
source: manual
dependency: None
Utility_report_Raffinate_Incinerated:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6482
source: manual
dependency: None
D1D001Readings_T_2101_A_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6449
source: dcs
dependency: None
D1D001Readings_T_2101_B_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6450
source: dcs
dependency: None
Pure_Production_LT_2701_A_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6466
source: dcs
dependency: None
Pure_Production_LT_2701_B_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6467
source: dcs
dependency: None
D1D001_consumptions_Closing_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6457
source: calculated
dependency:
- D1D001Readings_T_2703_A_DPR
- D1D001Readings_T_2703_B_DPR
- D1D001Readings_T_2101_A_DPR
- D1D001Readings_T_2101_B_DPR
D1D001_consumptions_Total_Receipt_DPR:
column_tag: site_116$dept_134$line_350$equipment_4298$tag_6455
source: calculated_depends_previous_value
dependency:
- D1D001_consumptions_Total_Receipt_DPR
- D1D001_consumptions_Day_Receipt_DPR
7302011030_Consumptions_Total_Receipt_DPR:
column_tag: site_116$dept_134$line_350$equipment_4299$tag_6489
source: calculated_depends_previous_value
dependency:
- 7302011030_Consumptions_Total_Receipt_DPR
- 7302011030_Consumptions_Day_Receipt_DPR
7302011030_Consumptions_Total_Cons_DPR:
column_tag: site_116$dept_134$line_350$equipment_4299$tag_6458
source: calculated_depends_previous_value
dependency:
- 7302011030_Consumptions_Total_Cons_DPR
- 7302011030_Consumptions_Day_Cons_DPR
7302011061_Consumption_Closing_DPR:
column_tag: site_116$dept_134$line_350$equipment_4302$tag_6499
source: calculated_depends_previous_value
dependency:
- 7302011061_Consumption_Opening_DPR
- 7302011061_Consumption_Day_Receipt_DPR
- 7302011061_Consumption_Day_Cons_DPR
7302011061_Consumption_Total_Receipt_DPR:
column_tag: site_116$dept_134$line_350$equipment_4302$tag_6495
source: calculated_depends_previous_value
dependency:
- 7302011061_Consumption_Total_Receipt_DPR
- 7302011030_Consumptions_Day_Receipt_DPR
7302011061_Consumption_Total_Cons_DPR:
column_tag: site_116$dept_134$line_350$equipment_4302$tag_6498
source: calculated_depends_previous_value
dependency:
- 7302011061_Consumption_Total_Cons_DPR
- 7302011061_Consumption_Day_Cons_DPR
Crude_Prod_Total_Prod_DPR:
column_tag: site_116$dept_134$line_350$equipment_4305$tag_6461
source: calculated_depends_previous_value
dependency:
- Crude_Prod_Total_Prod_DPR
- Crude_Prod_Day_Prod_DPR
Pure_Production_Closing_of_Pure_Tanks_only_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6468
source: calculated_depends_previous_value
dependency:
- Pure_Production_LT_2701_A_DPR
- Pure_Production_LT_2701_B_DPR
- Pure_Production_Pure_tank_Dead_Volumes_DPR
Pure_Production_Total_Prod_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6494
source: calculated_depends_previous_value
dependency:
- Pure_Production_Total_Prod_DPR
- Pure_Production_Day_Prod_DPR
Pure_Production_Total_Nia_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6463
source: calculated_depends_previous_value
dependency:
- Pure_Production_Total_Nia_DPR
- Pure_Production_Day_Nia_DPR
Pure_Production_Total_Drum_Filling_DPR:
column_tag: site_116$dept_134$line_350$equipment_4306$tag_6465
source: calculated_depends_previous_value
dependency:
- Pure_Production_Total_Drum_Filling_DPR
- Pure_Production_Day_Drum_Filling_DPR
Utility_report_Actual_Ammonia_Norms:
column_tag: site_116$dept_134$line_350$equipment_4179$tag_6486
source: calculated
dependency:
- 7302011030_Consumptions_Day_Cons_DPR
- Crude_Prod_Day_Prod_DPR
Utility_report_Actual_Beta_Norms:
column_tag: site_116$dept_134$line_350$equipment_4179$tag_6724
source: calculated
dependency:
- D1D001_consumptions_Day_Cons_DPR
- D1D001_consumptions_Day_Recovery_DPR
- Crude_Prod_Day_Prod_DPR
Utility_report_Actual_Benzene_Norms:
column_tag: site_116$dept_134$line_350$equipment_4179$tag_6725
source: calculated
dependency:
- 7302011061_Consumption_Day_Cons_DPR
- Crude_Prod_Day_Prod_DPR
Utility_report_Day_DM_norm:
column_tag: site_116$dept_135$line_366$equipment_4307$tag_6915
source: calculated
dependency: Utility_report_Day_DM
Beta_Purification_Column_C_2409_Outlet_Flow_TZ:
column_tag: site_116$dept_134$line_351$equipment_4209$tag_5372
source: manual
dependency: None
APP_NAME=dalmia-solar-degradation
KAIROS_URI=https://iLens:iLensDAL$456@dalmia.ilens.io/kairos/
KAIROS_METRIC=ilens.live_data.raw
AGGREGATOR=max
AGGREGATOR_VALUE=30
AGGREGATOR_UNIT=minutes
KAFKA_HOST=192.168.0.220
KAFKA_PORT=9092
KAFKA_TOPIC=ilens_dev
START_RELATIVE=90
END_RELATIVE=0
SENDER_EMAIL=no-reply@unifytwin.com
MONGO_URI=mongodb://ilens:ilens4321@192.168.0.220:2717/
REQUIRED_TZ="Asia/Kolkata"
MLFLOW_TRACKING_URI=https://qa.unifytwin.com/mlflow/
MLFLOW_TRACKING_USERNAME=mlflow
MLFLOW_TRACKING_PASSWORD=MlFlOwQA#4321
AZURE_STORAGE_CONNECTION_STRING=DefaultEndpointsProtocol=https;AccountName=azrmlilensqa006382180551;AccountKey=tDGOKfiZ2svfoMvVmS0Fbpf0FTHfTq4wKYuDX7cAxlhve/3991QuzdvJHm9vWc+lo6mtC+x9yPSghWNR4+gacg==;EndpointSuffix=core.windows.net
AZURE_STORAGE_ACCESS_KEY=tDGOKfiZ2svfoMvVmS0Fbpf0FTHfTq4wKYuDX7cAxlhve/3991QuzdvJHm9vWc+lo6mtC+x9yPSghWNR4+gacg==
USER=Dalmia_degradation
EXPERIMENT_NAME=Dalmia Solar Degradation1
RUN_NAME=Degradation
MODEL_NAME=versioning
CHECK_PARAM=hours
MODEL_CHECK_PARAM=144
MODELS_LIST=lr,knn,gbr,rf,catboost,lightgbm,ada,et,xgboost,dt,en,par,huber
SELECTED_METRIC=R2
HYPERPARAMETER_TUNING_METHOD=scikit-learn
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
if __name__ == "__main__":
from dotenv import load_dotenv
load_dotenv(dotenv_path='config.env')
import os
import os.path
import sys
from configparser import ConfigParser, BasicInterpolation
import yaml
from loguru import logger
# Configuring file constants
data_conf = "./conf/data.yml"
class EnvInterpolation(BasicInterpolation):
"""
Interpolation which expands environment variables in values.
"""
def before_get(self, parser, section, option, value, defaults):
value = super().before_get(parser, section, option, value, defaults)
if not os.path.expandvars(value).startswith("$"):
return os.path.expandvars(value)
else:
return
try:
config = ConfigParser(interpolation=EnvInterpolation())
config.read(f"conf/application.conf")
except Exception as e:
print(f"Error while loading the config: {e}")
print("Failed to Load Configuration. Exiting!!!")
sys.exit()
class Mongo:
mongo_uri = config["MONGO"]["mongo_uri"]
class KairosDb:
uri = config["KAIROS_DB"]["uri"]
metric_name = config['KAIROS_DB']['metric_name']
aggregator = config['KAIROS_DB']['aggregator']
aggregator_value = config['KAIROS_DB']['aggregator_value']
aggregator_unit = config['KAIROS_DB']['aggregator_unit']
class Kafka:
kafka_host = config["KAFKA"]["kafka_host"]
kafka_port = config["KAFKA"]["kafka_port"]
kafka_topic = config["KAFKA"]["kafka_topic"]
class DateRange:
start_date = config.get("DATE_RANGE", "start_date")
end_date = config.get("DATE_RANGE", "end_date")
start_relative_days = config.get("DATE_RANGE", "start_relative_days")
end_relative_days = config.get("DATE_RANGE", "end_relative_days")
class ReqTimeZone:
required_tz = config.get('TIMEZONE', 'required_tz')
class MlFlow:
mlflow_tracking_uri = config['MLFLOW']['mlflow_tracking_uri']
mlflow_tracking_username = config['MLFLOW']['mlflow_tracking_username']
mlflow_tracking_password = config['MLFLOW']['mlflow_tracking_password']
azure_storage_connection_string = config['MLFLOW']['azure_storage_connection_string']
azure_storage_access_key = config['MLFLOW']['azure_storage_access_key']
user = config['MLFLOW']['user']
experiment_name = config['MLFLOW']['experiment_name']
run_name = config['MLFLOW']['run_name']
model_name = config['MLFLOW']['model_name']
check_param = config['MLFLOW']['check_param']
model_check_param = config['MLFLOW']['model_check_param']
class PycaretParams:
model_list = config['PYCARET']['models_list']
selected_metric = config['PYCARET']['selected_metric']
hyperparameter_tuning_method= config['PYCARET']['hyperparameter_tuning_method']
json_file_path = "scripts/utils/"
class DBConstants:
# DB
db_metadata = "ilens_configuration"
# collections
collection_rule_targets = "rule_targets"
yield_sheet_name = "yield_reports_3cp"
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":1000,"learn_sets":["learn"],"name":"experiment"},
"iterations":[
{"learn":[4.066425663],"iteration":0,"passed_time":0.006424193084,"remaining_time":6.417768891},
{"learn":[3.872139211],"iteration":1,"passed_time":0.01241284082,"remaining_time":6.19400757},
{"learn":[3.694881633],"iteration":2,"passed_time":0.0183713426,"remaining_time":6.105409523},
{"learn":[3.529475327],"iteration":3,"passed_time":0.02337929915,"remaining_time":5.821445489},
{"learn":[3.378025017],"iteration":4,"passed_time":0.03063476427,"remaining_time":6.096318089},
{"learn":[3.242220564],"iteration":5,"passed_time":0.03664170452,"remaining_time":6.070309049},
{"learn":[3.116929716],"iteration":6,"passed_time":0.04198303576,"remaining_time":5.955593501},
{"learn":[3.001867662],"iteration":7,"passed_time":0.04717600752,"remaining_time":5.849824932},
{"learn":[2.895036703],"iteration":8,"passed_time":0.05221041905,"remaining_time":5.748947253},
{"learn":[2.800810579],"iteration":9,"passed_time":0.05732710422,"remaining_time":5.675383318},
{"learn":[2.714778659],"iteration":10,"passed_time":0.06347706169,"remaining_time":5.70716491},
{"learn":[2.6385351],"iteration":11,"passed_time":0.0687189125,"remaining_time":5.65785713},
{"learn":[2.568037007],"iteration":12,"passed_time":0.07380069284,"remaining_time":5.60317568},
{"learn":[2.504107964],"iteration":13,"passed_time":0.07809626354,"remaining_time":5.500208275},
{"learn":[2.448639679],"iteration":14,"passed_time":0.0834864442,"remaining_time":5.482276502},
{"learn":[2.396911188],"iteration":15,"passed_time":0.08728343526,"remaining_time":5.367931268},
{"learn":[2.35246371],"iteration":16,"passed_time":0.09249463277,"remaining_time":5.348366118},
{"learn":[2.311553697],"iteration":17,"passed_time":0.09784991609,"remaining_time":5.338256533},
{"learn":[2.273535233],"iteration":18,"passed_time":0.1017399071,"remaining_time":5.252992046},
{"learn":[2.243176794],"iteration":19,"passed_time":0.105677007,"remaining_time":5.178173343},
{"learn":[2.213419896],"iteration":20,"passed_time":0.1099069124,"remaining_time":5.123755585},
{"learn":[2.186844053],"iteration":21,"passed_time":0.1141587343,"remaining_time":5.074874642},
{"learn":[2.164298857],"iteration":22,"passed_time":0.1179621237,"remaining_time":5.010825863},
{"learn":[2.144727151],"iteration":23,"passed_time":0.1216079497,"remaining_time":4.945389955},
{"learn":[2.126026781],"iteration":24,"passed_time":0.1254489239,"remaining_time":4.892508031},
{"learn":[2.10936523],"iteration":25,"passed_time":0.1296668295,"remaining_time":4.85751892},
{"learn":[2.093813358],"iteration":26,"passed_time":0.1333177432,"remaining_time":4.804376449},
{"learn":[2.08106308],"iteration":27,"passed_time":0.1378196214,"remaining_time":4.784309714},
{"learn":[2.069160574],"iteration":28,"passed_time":0.1423964626,"remaining_time":4.767826387},
{"learn":[2.059446075],"iteration":29,"passed_time":0.1464057383,"remaining_time":4.733785537},
{"learn":[2.050142587],"iteration":30,"passed_time":0.1507621079,"remaining_time":4.712531695},
{"learn":[2.042211161],"iteration":31,"passed_time":0.1560622823,"remaining_time":4.72088404},
{"learn":[2.035159576],"iteration":32,"passed_time":0.1598608982,"remaining_time":4.684408745},
{"learn":[2.028504243],"iteration":33,"passed_time":0.1639502782,"remaining_time":4.658116727},
{"learn":[2.022159325],"iteration":34,"passed_time":0.1680833306,"remaining_time":4.634297543},
{"learn":[2.015729363],"iteration":35,"passed_time":0.1717704355,"remaining_time":4.599630551},
{"learn":[2.01175385],"iteration":36,"passed_time":0.1758909172,"remaining_time":4.577917656},
{"learn":[2.00736154],"iteration":37,"passed_time":0.1794568342,"remaining_time":4.543091434},
{"learn":[2.003280734],"iteration":38,"passed_time":0.1828852226,"remaining_time":4.50647946},
{"learn":[1.999848901],"iteration":39,"passed_time":0.1865713818,"remaining_time":4.477713163},
{"learn":[1.996850175],"iteration":40,"passed_time":0.1901530078,"remaining_time":4.447725232},
{"learn":[1.994077786],"iteration":41,"passed_time":0.193642153,"remaining_time":4.4168853},
{"learn":[1.991101373],"iteration":42,"passed_time":0.1973994458,"remaining_time":4.393285339},
{"learn":[1.988782323],"iteration":43,"passed_time":0.2004920395,"remaining_time":4.356145223},
{"learn":[1.98694476],"iteration":44,"passed_time":0.2041998623,"remaining_time":4.333574856},
{"learn":[1.985258122],"iteration":45,"passed_time":0.2081666026,"remaining_time":4.317194324},
{"learn":[1.983819836],"iteration":46,"passed_time":0.2117001718,"remaining_time":4.292558804},
{"learn":[1.982268067],"iteration":47,"passed_time":0.2151096594,"remaining_time":4.266341578},
{"learn":[1.980972246],"iteration":48,"passed_time":0.2186049241,"remaining_time":4.242720058},
{"learn":[1.979088298],"iteration":49,"passed_time":0.221569305,"remaining_time":4.209816795},
{"learn":[1.97772851],"iteration":50,"passed_time":0.2258360068,"remaining_time":4.20232099},
{"learn":[1.976163702],"iteration":51,"passed_time":0.2293192085,"remaining_time":4.180665571},
{"learn":[1.974979152],"iteration":52,"passed_time":0.2326786199,"remaining_time":4.157484019},
{"learn":[1.97292109],"iteration":53,"passed_time":0.2369361796,"remaining_time":4.150770849},
{"learn":[1.970434948],"iteration":54,"passed_time":0.2401805275,"remaining_time":4.126738154},
{"learn":[1.969842844],"iteration":55,"passed_time":0.2451243612,"remaining_time":4.132096374},
{"learn":[1.969106854],"iteration":56,"passed_time":0.249397677,"remaining_time":4.126000165},
{"learn":[1.967430609],"iteration":57,"passed_time":0.2525092231,"remaining_time":4.101098072},
{"learn":[1.966603735],"iteration":58,"passed_time":0.2563033054,"remaining_time":4.087820515},
{"learn":[1.964990882],"iteration":59,"passed_time":0.2595628086,"remaining_time":4.066484002},
{"learn":[1.963564592],"iteration":60,"passed_time":0.2645336017,"remaining_time":4.07208282},
{"learn":[1.961689398],"iteration":61,"passed_time":0.2681585339,"remaining_time":4.05697911},
{"learn":[1.961456558],"iteration":62,"passed_time":0.2716566221,"remaining_time":4.040353252},
{"learn":[1.960592468],"iteration":63,"passed_time":0.2756506314,"remaining_time":4.031390484},
{"learn":[1.959346171],"iteration":64,"passed_time":0.2808210048,"remaining_time":4.039502146},
{"learn":[1.958453144],"iteration":65,"passed_time":0.2848846017,"remaining_time":4.031548758},
{"learn":[1.957745233],"iteration":66,"passed_time":0.2884131775,"remaining_time":4.016261114},
{"learn":[1.956743102],"iteration":67,"passed_time":0.2922789932,"remaining_time":4.005941495},
{"learn":[1.955940597],"iteration":68,"passed_time":0.2958171649,"remaining_time":3.991388124},
{"learn":[1.955461494],"iteration":69,"passed_time":0.2986767374,"remaining_time":3.968133797},
{"learn":[1.95420123],"iteration":70,"passed_time":0.3015248006,"remaining_time":3.945303376},
{"learn":[1.953440047],"iteration":71,"passed_time":0.3060911355,"remaining_time":3.945174635},
{"learn":[1.952746745],"iteration":72,"passed_time":0.3093973298,"remaining_time":3.928922257},
{"learn":[1.952127586],"iteration":73,"passed_time":0.3128906541,"remaining_time":3.915361428},
{"learn":[1.951411553],"iteration":74,"passed_time":0.3174334017,"remaining_time":3.915011954},
{"learn":[1.951219197],"iteration":75,"passed_time":0.3203744388,"remaining_time":3.895078703},
{"learn":[1.949951904],"iteration":76,"passed_time":0.3238859577,"remaining_time":3.882425181},
{"learn":[1.949757257],"iteration":77,"passed_time":0.3276519042,"remaining_time":3.873013534},
{"learn":[1.9488718],"iteration":78,"passed_time":0.3314714989,"remaining_time":3.864370259},
{"learn":[1.947643165],"iteration":79,"passed_time":0.3350570234,"remaining_time":3.853155769},
{"learn":[1.947011048],"iteration":80,"passed_time":0.3395334024,"remaining_time":3.852236997},
{"learn":[1.946705587],"iteration":81,"passed_time":0.3426024863,"remaining_time":3.835476615},
{"learn":[1.945890507],"iteration":82,"passed_time":0.3463807611,"remaining_time":3.82688142},
{"learn":[1.94498414],"iteration":83,"passed_time":0.350349761,"remaining_time":3.820480727},
{"learn":[1.943645022],"iteration":84,"passed_time":0.3537978512,"remaining_time":3.80852981},
{"learn":[1.942750278],"iteration":85,"passed_time":0.3578362459,"remaining_time":3.803050335},
{"learn":[1.94248305],"iteration":86,"passed_time":0.3615162302,"remaining_time":3.793842738},
{"learn":[1.941491203],"iteration":87,"passed_time":0.3654376368,"remaining_time":3.787262782},
{"learn":[1.941208685],"iteration":88,"passed_time":0.3691363082,"remaining_time":3.77846266},
{"learn":[1.940315839],"iteration":89,"passed_time":0.3726894577,"remaining_time":3.768304517},
{"learn":[1.939282311],"iteration":90,"passed_time":0.3764062855,"remaining_time":3.759926523},
{"learn":[1.939006518],"iteration":91,"passed_time":0.3804085191,"remaining_time":3.754466688},
{"learn":[1.938030116],"iteration":92,"passed_time":0.3846144991,"remaining_time":3.751025276},
{"learn":[1.937144761],"iteration":93,"passed_time":0.3872931412,"remaining_time":3.732846659},
{"learn":[1.936148768],"iteration":94,"passed_time":0.391743976,"remaining_time":3.731876824},
{"learn":[1.935706384],"iteration":95,"passed_time":0.3960837622,"remaining_time":3.729788761},
{"learn":[1.935421463],"iteration":96,"passed_time":0.4003002043,"remaining_time":3.726506026},
{"learn":[1.934763923],"iteration":97,"passed_time":0.4037285285,"remaining_time":3.715950334},
{"learn":[1.934407433],"iteration":98,"passed_time":0.4069566936,"remaining_time":3.703716979},
{"learn":[1.934079101],"iteration":99,"passed_time":0.4106064145,"remaining_time":3.69545773},
{"learn":[1.933024363],"iteration":100,"passed_time":0.4141758475,"remaining_time":3.686575118},
{"learn":[1.93250729],"iteration":101,"passed_time":0.4183911293,"remaining_time":3.683482687},
{"learn":[1.931651677],"iteration":102,"passed_time":0.4217965827,"remaining_time":3.673315871},
{"learn":[1.930946345],"iteration":103,"passed_time":0.426378064,"remaining_time":3.673411013},
{"learn":[1.930522678],"iteration":104,"passed_time":0.4305640806,"remaining_time":3.670046211},
{"learn":[1.930218738],"iteration":105,"passed_time":0.4346250391,"remaining_time":3.665611178},
{"learn":[1.929887223],"iteration":106,"passed_time":0.4392432413,"remaining_time":3.665833781},
{"learn":[1.929639763],"iteration":107,"passed_time":0.4429244199,"remaining_time":3.658227616},
{"learn":[1.929231468],"iteration":108,"passed_time":0.4462435942,"remaining_time":3.647734334},
{"learn":[1.928441191],"iteration":109,"passed_time":0.4500550986,"remaining_time":3.641354888},
{"learn":[1.927332482],"iteration":110,"passed_time":0.4533775193,"remaining_time":3.631104637},
{"learn":[1.926989433],"iteration":111,"passed_time":0.4571450445,"remaining_time":3.624507139},
{"learn":[1.926278957],"iteration":112,"passed_time":0.4614142278,"remaining_time":3.621897522},
{"learn":[1.925381981],"iteration":113,"passed_time":0.466038672,"remaining_time":3.622019855},
{"learn":[1.925133134],"iteration":114,"passed_time":0.4711644758,"remaining_time":3.625917922},
{"learn":[1.924265591],"iteration":115,"passed_time":0.4752305323,"remaining_time":3.621584401},
{"learn":[1.923923955],"iteration":116,"passed_time":0.4791646317,"remaining_time":3.616259571},
{"learn":[1.923367478],"iteration":117,"passed_time":0.4834869669,"remaining_time":3.61386021},
{"learn":[1.922716498],"iteration":118,"passed_time":0.4881302889,"remaining_time":3.613804912},
{"learn":[1.92234057],"iteration":119,"passed_time":0.4922802457,"remaining_time":3.610055135},
{"learn":[1.922114333],"iteration":120,"passed_time":0.4955508743,"remaining_time":3.599910897},
{"learn":[1.921911605],"iteration":121,"passed_time":0.5000944631,"remaining_time":3.59904048},
{"learn":[1.921626808],"iteration":122,"passed_time":0.5054066359,"remaining_time":3.603590404},
{"learn":[1.921409923],"iteration":123,"passed_time":0.509971452,"remaining_time":3.602701548},
{"learn":[1.921041978],"iteration":124,"passed_time":0.5151924522,"remaining_time":3.606347165},
{"learn":[1.920267207],"iteration":125,"passed_time":0.5204063188,"remaining_time":3.609802561},
{"learn":[1.920061582],"iteration":126,"passed_time":0.5247027482,"remaining_time":3.606814954},
{"learn":[1.919682021],"iteration":127,"passed_time":0.5290210875,"remaining_time":3.603956159},
{"learn":[1.919139101],"iteration":128,"passed_time":0.5339218553,"remaining_time":3.605007256},
{"learn":[1.918505365],"iteration":129,"passed_time":0.5386539518,"remaining_time":3.604837985},
{"learn":[1.917920423],"iteration":130,"passed_time":0.5422354946,"remaining_time":3.596966754},
{"learn":[1.917738848],"iteration":131,"passed_time":0.5463637617,"remaining_time":3.592755645},
{"learn":[1.917322612],"iteration":132,"passed_time":0.5511136301,"remaining_time":3.592597875},
{"learn":[1.916970046],"iteration":133,"passed_time":0.5561583842,"remaining_time":3.594277319},
{"learn":[1.916080162],"iteration":134,"passed_time":0.5611059642,"remaining_time":3.595234511},
{"learn":[1.915716055],"iteration":135,"passed_time":0.5655412749,"remaining_time":3.592850452},
{"learn":[1.915171449],"iteration":136,"passed_time":0.5698545204,"remaining_time":3.589667527},
{"learn":[1.915077803],"iteration":137,"passed_time":0.5739196494,"remaining_time":3.58491839},
{"learn":[1.914641475],"iteration":138,"passed_time":0.5780806042,"remaining_time":3.580772663},
{"learn":[1.914018347],"iteration":139,"passed_time":0.5821824095,"remaining_time":3.576263373},
{"learn":[1.913583179],"iteration":140,"passed_time":0.5869922357,"remaining_time":3.576073266},
{"learn":[1.913204995],"iteration":141,"passed_time":0.5907742346,"remaining_time":3.569607699},
{"learn":[1.912871082],"iteration":142,"passed_time":0.5945901944,"remaining_time":3.563383193},
{"learn":[1.912544026],"iteration":143,"passed_time":0.5991684574,"remaining_time":3.561723608},
{"learn":[1.912066723],"iteration":144,"passed_time":0.6030477564,"remaining_time":3.555902288},
{"learn":[1.91133261],"iteration":145,"passed_time":0.6067467308,"remaining_time":3.549052795},
{"learn":[1.911124803],"iteration":146,"passed_time":0.611091715,"remaining_time":3.545994782},
{"learn":[1.910856507],"iteration":147,"passed_time":0.6161371178,"remaining_time":3.546951516},
{"learn":[1.910235958],"iteration":148,"passed_time":0.621839715,"remaining_time":3.551581191},
{"learn":[1.90970324],"iteration":149,"passed_time":0.6256563671,"remaining_time":3.54538608},
{"learn":[1.908946001],"iteration":150,"passed_time":0.6297582617,"remaining_time":3.540826253},
{"learn":[1.908705846],"iteration":151,"passed_time":0.6344156761,"remaining_time":3.539371667},
{"learn":[1.908176272],"iteration":152,"passed_time":0.6393460397,"remaining_time":3.539386246},
{"learn":[1.907573781],"iteration":153,"passed_time":0.6431688256,"remaining_time":3.53325212},
{"learn":[1.907195577],"iteration":154,"passed_time":0.6484018523,"remaining_time":3.534835905},
{"learn":[1.906544654],"iteration":155,"passed_time":0.653347483,"remaining_time":3.534777408},
{"learn":[1.905984288],"iteration":156,"passed_time":0.6574590592,"remaining_time":3.530178261},
{"learn":[1.905316811],"iteration":157,"passed_time":0.6626592651,"remaining_time":3.531386717},
{"learn":[1.904773916],"iteration":158,"passed_time":0.6677988378,"remaining_time":3.532193853},
{"learn":[1.904368194],"iteration":159,"passed_time":0.6728105193,"remaining_time":3.532255226},
{"learn":[1.903704148],"iteration":160,"passed_time":0.6772989088,"remaining_time":3.529526612},
{"learn":[1.903230065],"iteration":161,"passed_time":0.6808505963,"remaining_time":3.521930863},
{"learn":[1.902767039],"iteration":162,"passed_time":0.6854270631,"remaining_time":3.519646943},
{"learn":[1.901946053],"iteration":163,"passed_time":0.6891439541,"remaining_time":3.512953327},
{"learn":[1.901518774],"iteration":164,"passed_time":0.6936817393,"remaining_time":3.510450014},
{"learn":[1.901061049],"iteration":165,"passed_time":0.6978023395,"remaining_time":3.505826212},
{"learn":[1.900571146],"iteration":166,"passed_time":0.7028751784,"remaining_time":3.505958225},
{"learn":[1.900226933],"iteration":167,"passed_time":0.7059675144,"remaining_time":3.496220071},
{"learn":[1.899736802],"iteration":168,"passed_time":0.7098375277,"remaining_time":3.49038453},
{"learn":[1.899507889],"iteration":169,"passed_time":0.7139595082,"remaining_time":3.485802305},
{"learn":[1.898463745],"iteration":170,"passed_time":0.7173472432,"remaining_time":3.477665875},
{"learn":[1.898105464],"iteration":171,"passed_time":0.7218306579,"remaining_time":3.474859213},
{"learn":[1.897633913],"iteration":172,"passed_time":0.7254922547,"remaining_time":3.468104593},
{"learn":[1.897296504],"iteration":173,"passed_time":0.7288559965,"remaining_time":3.459971569},
{"learn":[1.896764636],"iteration":174,"passed_time":0.7317467646,"remaining_time":3.449663319},
{"learn":[1.896459699],"iteration":175,"passed_time":0.7360921512,"remaining_time":3.446249617},
{"learn":[1.896234817],"iteration":176,"passed_time":0.7397207883,"remaining_time":3.439492705},
{"learn":[1.895774452],"iteration":177,"passed_time":0.7435955069,"remaining_time":3.433907341},
{"learn":[1.895336109],"iteration":178,"passed_time":0.7467726543,"remaining_time":3.425141616},
{"learn":[1.894834206],"iteration":179,"passed_time":0.7508230339,"remaining_time":3.420416043},
{"learn":[1.894456369],"iteration":180,"passed_time":0.7544394727,"remaining_time":3.41373441},
{"learn":[1.894215026],"iteration":181,"passed_time":0.7577382222,"remaining_time":3.405658603},
{"learn":[1.893713816],"iteration":182,"passed_time":0.7616796344,"remaining_time":3.40050416},
{"learn":[1.893195993],"iteration":183,"passed_time":0.7647144601,"remaining_time":3.391342388},
{"learn":[1.893028497],"iteration":184,"passed_time":0.7678965088,"remaining_time":3.382895431},
{"learn":[1.89252859],"iteration":185,"passed_time":0.7719031985,"remaining_time":3.378113998},
{"learn":[1.892274852],"iteration":186,"passed_time":0.776186609,"remaining_time":3.374543921},
{"learn":[1.891843813],"iteration":187,"passed_time":0.7802618205,"remaining_time":3.370067012},
{"learn":[1.891466712],"iteration":188,"passed_time":0.7837813777,"remaining_time":3.363210039},
{"learn":[1.890739811],"iteration":189,"passed_time":0.78780711,"remaining_time":3.3585461},
{"learn":[1.89030705],"iteration":190,"passed_time":0.7915271222,"remaining_time":3.352593936},
{"learn":[1.890045677],"iteration":191,"passed_time":0.795886282,"remaining_time":3.34935477},
{"learn":[1.889436593],"iteration":192,"passed_time":0.7992770743,"remaining_time":3.342054917},
{"learn":[1.888971253],"iteration":193,"passed_time":0.8030584263,"remaining_time":3.336417998},
{"learn":[1.888196676],"iteration":194,"passed_time":0.8070061275,"remaining_time":3.331486834},
{"learn":[1.887782421],"iteration":195,"passed_time":0.8113753374,"remaining_time":3.328294751},
{"learn":[1.887117193],"iteration":196,"passed_time":0.8156666648,"remaining_time":3.324773258},
{"learn":[1.886728062],"iteration":197,"passed_time":0.8187601593,"remaining_time":3.316392161},
{"learn":[1.886336947],"iteration":198,"passed_time":0.8231739789,"remaining_time":3.313378679},
{"learn":[1.88604758],"iteration":199,"passed_time":0.8268930275,"remaining_time":3.30757211},
{"learn":[1.88558347],"iteration":200,"passed_time":0.831148646,"remaining_time":3.303919244},
{"learn":[1.885181876],"iteration":201,"passed_time":0.8355101022,"remaining_time":3.300678523},
{"learn":[1.884783278],"iteration":202,"passed_time":0.8397022901,"remaining_time":3.296762193},
{"learn":[1.884241901],"iteration":203,"passed_time":0.8445009287,"remaining_time":3.295209506},
{"learn":[1.883962923],"iteration":204,"passed_time":0.8489629471,"remaining_time":3.292319722},
{"learn":[1.883577929],"iteration":205,"passed_time":0.8539534559,"remaining_time":3.29145167},
{"learn":[1.883269504],"iteration":206,"passed_time":0.8585506865,"remaining_time":3.289037171},
{"learn":[1.882710257],"iteration":207,"passed_time":0.8632736498,"remaining_time":3.287080436},
{"learn":[1.882293493],"iteration":208,"passed_time":0.866631442,"remaining_time":3.279930481},
{"learn":[1.882068287],"iteration":209,"passed_time":0.8702580876,"remaining_time":3.273828044},
{"learn":[1.881405669],"iteration":210,"passed_time":0.8735142004,"remaining_time":3.266363527},
{"learn":[1.881084604],"iteration":211,"passed_time":0.8770225107,"remaining_time":3.259876125},
{"learn":[1.880666473],"iteration":212,"passed_time":0.8810430978,"remaining_time":3.255309474},
{"learn":[1.88018588],"iteration":213,"passed_time":0.8848687021,"remaining_time":3.250031775},
{"learn":[1.87983598],"iteration":214,"passed_time":0.8882083307,"remaining_time":3.242993207},
{"learn":[1.879322799],"iteration":215,"passed_time":0.8913064438,"remaining_time":3.235112277},
{"learn":[1.878750751],"iteration":216,"passed_time":0.8948835834,"remaining_time":3.229003898},
{"learn":[1.878387985],"iteration":217,"passed_time":0.8990537724,"remaining_time":3.225046101},
{"learn":[1.878188491],"iteration":218,"passed_time":0.903612053,"remaining_time":3.222470381},
{"learn":[1.877689677],"iteration":219,"passed_time":0.9074237631,"remaining_time":3.217229705},
{"learn":[1.877216739],"iteration":220,"passed_time":0.9114538183,"remaining_time":3.212771604},
{"learn":[1.876586796],"iteration":221,"passed_time":0.9157034722,"remaining_time":3.209086943},
{"learn":[1.876298688],"iteration":222,"passed_time":0.9206730914,"remaining_time":3.207905794},
{"learn":[1.876124079],"iteration":223,"passed_time":0.924784044,"remaining_time":3.203716152},
{"learn":[1.875467359],"iteration":224,"passed_time":0.9288851349,"remaining_time":3.199493242},
{"learn":[1.875020674],"iteration":225,"passed_time":0.9327087162,"remaining_time":3.194321002},
{"learn":[1.874594111],"iteration":226,"passed_time":0.9363902947,"remaining_time":3.188677083},
{"learn":[1.874345228],"iteration":227,"passed_time":0.9401553564,"remaining_time":3.183333049},
{"learn":[1.873808119],"iteration":228,"passed_time":0.9449254368,"remaining_time":3.181386514},
{"learn":[1.873378623],"iteration":229,"passed_time":0.9491597287,"remaining_time":3.1776217},
{"learn":[1.87270759],"iteration":230,"passed_time":0.954289388,"remaining_time":3.176833504},
{"learn":[1.87237129],"iteration":231,"passed_time":0.9583729466,"remaining_time":3.172544927},
{"learn":[1.872200317],"iteration":232,"passed_time":0.9616813435,"remaining_time":3.165706397},
{"learn":[1.871846801],"iteration":233,"passed_time":0.9656532879,"remaining_time":3.161070165},
{"learn":[1.871205464],"iteration":234,"passed_time":0.969401442,"remaining_time":3.155711077},
{"learn":[1.87080321],"iteration":235,"passed_time":0.9739583077,"remaining_time":3.152983674},
{"learn":[1.870267455],"iteration":236,"passed_time":0.9780080432,"remaining_time":3.148608173},
{"learn":[1.869477043],"iteration":237,"passed_time":0.9820576656,"remaining_time":3.144235047},
{"learn":[1.869323921],"iteration":238,"passed_time":0.9858915062,"remaining_time":3.139177557},
{"learn":[1.868948175],"iteration":239,"passed_time":0.9900282357,"remaining_time":3.135089413},
{"learn":[1.868682513],"iteration":240,"passed_time":0.9941488195,"remaining_time":3.130950017},
{"learn":[1.867953316],"iteration":241,"passed_time":0.9985345403,"remaining_time":3.127641246},
{"learn":[1.867625093],"iteration":242,"passed_time":1.002212212,"remaining_time":3.122117878},
{"learn":[1.867137561],"iteration":243,"passed_time":1.006142181,"remaining_time":3.117391347},
{"learn":[1.866638168],"iteration":244,"passed_time":1.01015852,"remaining_time":3.112937481},
{"learn":[1.866422242],"iteration":245,"passed_time":1.01463581,"remaining_time":3.109900002},
{"learn":[1.866022843],"iteration":246,"passed_time":1.0190736,"remaining_time":3.106730449},
{"learn":[1.865668211],"iteration":247,"passed_time":1.022088147,"remaining_time":3.099235025},
{"learn":[1.865333611],"iteration":248,"passed_time":1.025762517,"remaining_time":3.093765662},
{"learn":[1.864857651],"iteration":249,"passed_time":1.029378894,"remaining_time":3.088136682},
{"learn":[1.864146818],"iteration":250,"passed_time":1.033335293,"remaining_time":3.083538386},
{"learn":[1.863423449],"iteration":251,"passed_time":1.037670784,"remaining_time":3.080070421},
{"learn":[1.863057274],"iteration":252,"passed_time":1.042573488,"remaining_time":3.078270337},
{"learn":[1.862498682],"iteration":253,"passed_time":1.047380557,"remaining_time":3.076164943},
{"learn":[1.862128056],"iteration":254,"passed_time":1.051685605,"remaining_time":3.072571669},
{"learn":[1.861613225],"iteration":255,"passed_time":1.056403079,"remaining_time":3.070171449},
{"learn":[1.86092202],"iteration":256,"passed_time":1.060789017,"remaining_time":3.066794705},
{"learn":[1.860695122],"iteration":257,"passed_time":1.065123025,"remaining_time":3.063260794},
{"learn":[1.860207232],"iteration":258,"passed_time":1.068828584,"remaining_time":3.057922707},
{"learn":[1.859885452],"iteration":259,"passed_time":1.073975804,"remaining_time":3.056700364},
{"learn":[1.859540208],"iteration":260,"passed_time":1.078927641,"remaining_time":3.054894737},
{"learn":[1.859263173],"iteration":261,"passed_time":1.084058045,"remaining_time":3.05356808},
{"learn":[1.858558054],"iteration":262,"passed_time":1.089592332,"remaining_time":3.053344292},
{"learn":[1.858267444],"iteration":263,"passed_time":1.094499584,"remaining_time":3.051332174},
{"learn":[1.857970097],"iteration":264,"passed_time":1.099501645,"remaining_time":3.049561165},
{"learn":[1.857634673],"iteration":265,"passed_time":1.104282709,"remaining_time":3.047156048},
{"learn":[1.857327857],"iteration":266,"passed_time":1.107764972,"remaining_time":3.041167509},
{"learn":[1.856925828],"iteration":267,"passed_time":1.112825161,"remaining_time":3.039507529},
{"learn":[1.856602775],"iteration":268,"passed_time":1.118154144,"remaining_time":3.03855271},
{"learn":[1.856355469],"iteration":269,"passed_time":1.12328973,"remaining_time":3.037042604},
{"learn":[1.85603022],"iteration":270,"passed_time":1.127642432,"remaining_time":3.033399753},
{"learn":[1.855627428],"iteration":271,"passed_time":1.133123171,"remaining_time":3.03277084},
{"learn":[1.855084232],"iteration":272,"passed_time":1.138222773,"remaining_time":3.031091414},
{"learn":[1.8547845],"iteration":273,"passed_time":1.142845926,"remaining_time":3.028124607},
{"learn":[1.854607838],"iteration":274,"passed_time":1.147642708,"remaining_time":3.025603503},
{"learn":[1.854326147],"iteration":275,"passed_time":1.151539074,"remaining_time":3.020703949},
{"learn":[1.854216449],"iteration":276,"passed_time":1.154520506,"remaining_time":3.013423559},
{"learn":[1.853983002],"iteration":277,"passed_time":1.159568391,"remaining_time":3.011540929},
{"learn":[1.85349512],"iteration":278,"passed_time":1.164070566,"remaining_time":3.008225371},
{"learn":[1.853389361],"iteration":279,"passed_time":1.167299791,"remaining_time":3.001628035},
{"learn":[1.853068743],"iteration":280,"passed_time":1.171514676,"remaining_time":2.997576698},
{"learn":[1.852787951],"iteration":281,"passed_time":1.176190076,"remaining_time":2.994696718},
{"learn":[1.852302429],"iteration":282,"passed_time":1.181132505,"remaining_time":2.992480586},
{"learn":[1.851741787],"iteration":283,"passed_time":1.185797065,"remaining_time":2.989544714},
{"learn":[1.851486613],"iteration":284,"passed_time":1.189156864,"remaining_time":2.983323362},
{"learn":[1.851225018],"iteration":285,"passed_time":1.19380795,"remaining_time":2.980345722},
{"learn":[1.851032882],"iteration":286,"passed_time":1.198268295,"remaining_time":2.97688256},
{"learn":[1.850735112],"iteration":287,"passed_time":1.203069085,"remaining_time":2.974254126},
{"learn":[1.850505115],"iteration":288,"passed_time":1.207560147,"remaining_time":2.970848666},
{"learn":[1.850191947],"iteration":289,"passed_time":1.212219671,"remaining_time":2.96784816},
{"learn":[1.849754283],"iteration":290,"passed_time":1.216442735,"remaining_time":2.963772849},
{"learn":[1.849426528],"iteration":291,"passed_time":1.220958967,"remaining_time":2.960407359},
{"learn":[1.848914827],"iteration":292,"passed_time":1.225029265,"remaining_time":2.955957989},
{"learn":[1.848675822],"iteration":293,"passed_time":1.229459414,"remaining_time":2.952375328},
{"learn":[1.848458061],"iteration":294,"passed_time":1.233840629,"remaining_time":2.948669978},
{"learn":[1.848291643],"iteration":295,"passed_time":1.237609527,"remaining_time":2.943503741},
{"learn":[1.84811723],"iteration":296,"passed_time":1.241655105,"remaining_time":2.939001814},
{"learn":[1.847701067],"iteration":297,"passed_time":1.246180597,"remaining_time":2.935633486},
{"learn":[1.847412068],"iteration":298,"passed_time":1.251692036,"remaining_time":2.934568955},
{"learn":[1.847066085],"iteration":299,"passed_time":1.256396444,"remaining_time":2.931591703},
{"learn":[1.846772717],"iteration":300,"passed_time":1.259817299,"remaining_time":2.925622233},
{"learn":[1.846485156],"iteration":301,"passed_time":1.264304971,"remaining_time":2.922135329},
{"learn":[1.84619028],"iteration":302,"passed_time":1.268740501,"remaining_time":2.918521878},
{"learn":[1.845904766],"iteration":303,"passed_time":1.272151848,"remaining_time":2.912558179},
{"learn":[1.845541671],"iteration":304,"passed_time":1.275764142,"remaining_time":2.907069111},
{"learn":[1.845280462],"iteration":305,"passed_time":1.279204053,"remaining_time":2.901201348},
{"learn":[1.845041242],"iteration":306,"passed_time":1.283593918,"remaining_time":2.897493763},
{"learn":[1.844941465],"iteration":307,"passed_time":1.285653269,"remaining_time":2.888545656},
{"learn":[1.844573286],"iteration":308,"passed_time":1.289752759,"remaining_time":2.88420439},
{"learn":[1.844296317],"iteration":309,"passed_time":1.29356854,"remaining_time":2.879233203},
{"learn":[1.843458118],"iteration":310,"passed_time":1.298516068,"remaining_time":2.876776755},
{"learn":[1.843295607],"iteration":311,"passed_time":1.302221358,"remaining_time":2.871565046},
{"learn":[1.843171152],"iteration":312,"passed_time":1.306136621,"remaining_time":2.866823829},
{"learn":[1.842828409],"iteration":313,"passed_time":1.310068626,"remaining_time":2.862124451},
{"learn":[1.84233527],"iteration":314,"passed_time":1.313566948,"remaining_time":2.856486856},
{"learn":[1.84190774],"iteration":315,"passed_time":1.317403982,"remaining_time":2.851595961},
{"learn":[1.84165643],"iteration":316,"passed_time":1.321170676,"remaining_time":2.846560162},
{"learn":[1.841402802],"iteration":317,"passed_time":1.325601093,"remaining_time":2.842955803},
{"learn":[1.840944829],"iteration":318,"passed_time":1.329500544,"remaining_time":2.838212759},
{"learn":[1.840789762],"iteration":319,"passed_time":1.332172794,"remaining_time":2.830867186},
{"learn":[1.840672153],"iteration":320,"passed_time":1.335972768,"remaining_time":2.825936166},
{"learn":[1.84035102],"iteration":321,"passed_time":1.339583473,"remaining_time":2.820613649},
{"learn":[1.840219253],"iteration":322,"passed_time":1.342077115,"remaining_time":2.812960392},
{"learn":[1.840145416],"iteration":323,"passed_time":1.345937106,"remaining_time":2.808189764},
{"learn":[1.839879274],"iteration":324,"passed_time":1.348637054,"remaining_time":2.801015421},
{"learn":[1.839766243],"iteration":325,"passed_time":1.353130743,"remaining_time":2.797577057},
{"learn":[1.839399561],"iteration":326,"passed_time":1.357532017,"remaining_time":2.793942042},
{"learn":[1.83916424],"iteration":327,"passed_time":1.361344614,"remaining_time":2.789096283},
{"learn":[1.83897284],"iteration":328,"passed_time":1.36526652,"remaining_time":2.784479741},
{"learn":[1.838705164],"iteration":329,"passed_time":1.36903222,"remaining_time":2.779550264},
{"learn":[1.838478758],"iteration":330,"passed_time":1.373872207,"remaining_time":2.776799113},
{"learn":[1.838078363],"iteration":331,"passed_time":1.378218039,"remaining_time":2.773041115},
{"learn":[1.837705005],"iteration":332,"passed_time":1.382446678,"remaining_time":2.769044848},
{"learn":[1.837466608],"iteration":333,"passed_time":1.386573255,"remaining_time":2.764843675},
{"learn":[1.837230816],"iteration":334,"passed_time":1.390432809,"remaining_time":2.760112889},
{"learn":[1.837011978],"iteration":335,"passed_time":1.39522341,"remaining_time":2.757227214},
{"learn":[1.836815256],"iteration":336,"passed_time":1.399698557,"remaining_time":2.753709624},
{"learn":[1.836670592],"iteration":337,"passed_time":1.403065499,"remaining_time":2.748015859},
{"learn":[1.836280063],"iteration":338,"passed_time":1.407117251,"remaining_time":2.7436711},
{"learn":[1.835897815],"iteration":339,"passed_time":1.411879959,"remaining_time":2.740708157},
{"learn":[1.835746671],"iteration":340,"passed_time":1.416532524,"remaining_time":2.737521798},
{"learn":[1.835500402],"iteration":341,"passed_time":1.420113725,"remaining_time":2.732265589},
{"learn":[1.835394213],"iteration":342,"passed_time":1.425274205,"remaining_time":2.730044177},
{"learn":[1.83508335],"iteration":343,"passed_time":1.43012745,"remaining_time":2.727219788},
{"learn":[1.834913248],"iteration":344,"passed_time":1.43428731,"remaining_time":2.723067212},
{"learn":[1.834699749],"iteration":345,"passed_time":1.438817421,"remaining_time":2.719614431},
{"learn":[1.834515758],"iteration":346,"passed_time":1.442849505,"remaining_time":2.715218232},
{"learn":[1.834327839],"iteration":347,"passed_time":1.446345687,"remaining_time":2.70982008},
{"learn":[1.833955019],"iteration":348,"passed_time":1.450422091,"remaining_time":2.705515133},
{"learn":[1.833500385],"iteration":349,"passed_time":1.454057799,"remaining_time":2.700393056},
{"learn":[1.833366051],"iteration":350,"passed_time":1.458893011,"remaining_time":2.697497334},
{"learn":[1.833106884],"iteration":351,"passed_time":1.463377577,"remaining_time":2.693945086},
{"learn":[1.832662953],"iteration":352,"passed_time":1.467173269,"remaining_time":2.689124943},
{"learn":[1.832205292],"iteration":353,"passed_time":1.470949342,"remaining_time":2.684274788},
{"learn":[1.831638443],"iteration":354,"passed_time":1.47404882,"remaining_time":2.678201378},
{"learn":[1.831208934],"iteration":355,"passed_time":1.478410213,"remaining_time":2.674427464},
{"learn":[1.831051311],"iteration":356,"passed_time":1.482475745,"remaining_time":2.670117378},
{"learn":[1.830741101],"iteration":357,"passed_time":1.486990762,"remaining_time":2.666614718},
{"learn":[1.83042774],"iteration":358,"passed_time":1.491299062,"remaining_time":2.662737323},
{"learn":[1.830151187],"iteration":359,"passed_time":1.495507845,"remaining_time":2.658680614},
{"learn":[1.830051594],"iteration":360,"passed_time":1.499366217,"remaining_time":2.654002804},
{"learn":[1.829317686],"iteration":361,"passed_time":1.502453513,"remaining_time":2.647970556},
{"learn":[1.829026629],"iteration":362,"passed_time":1.507004102,"remaining_time":2.644522351},
{"learn":[1.828737363],"iteration":363,"passed_time":1.511415704,"remaining_time":2.640825241},
{"learn":[1.828480856],"iteration":364,"passed_time":1.515010943,"remaining_time":2.635703969},
{"learn":[1.82782878],"iteration":365,"passed_time":1.51897596,"remaining_time":2.631231581},
{"learn":[1.827732886],"iteration":366,"passed_time":1.522944065,"remaining_time":2.626767284},
{"learn":[1.827450937],"iteration":367,"passed_time":1.527911876,"remaining_time":2.62402257},
{"learn":[1.826898272],"iteration":368,"passed_time":1.531616301,"remaining_time":2.619105383},
{"learn":[1.82648536],"iteration":369,"passed_time":1.535477464,"remaining_time":2.614461628},
{"learn":[1.826275925],"iteration":370,"passed_time":1.539960438,"remaining_time":2.610876322},
{"learn":[1.826084982],"iteration":371,"passed_time":1.544682134,"remaining_time":2.607689195},
{"learn":[1.825648532],"iteration":372,"passed_time":1.548801294,"remaining_time":2.603480995},
{"learn":[1.825411659],"iteration":373,"passed_time":1.552929937,"remaining_time":2.599289147},
{"learn":[1.825109554],"iteration":374,"passed_time":1.557108978,"remaining_time":2.59518163},
{"learn":[1.824992388],"iteration":375,"passed_time":1.561880935,"remaining_time":2.592057721},
{"learn":[1.824544021],"iteration":376,"passed_time":1.564852346,"remaining_time":2.585949633},
{"learn":[1.824317376],"iteration":377,"passed_time":1.568160124,"remaining_time":2.580411632},
{"learn":[1.824105103],"iteration":378,"passed_time":1.572363929,"remaining_time":2.576353562},
{"learn":[1.823721745],"iteration":379,"passed_time":1.575426051,"remaining_time":2.570431979},
{"learn":[1.823513241],"iteration":380,"passed_time":1.579918988,"remaining_time":2.56685001},
{"learn":[1.823258007],"iteration":381,"passed_time":1.583736862,"remaining_time":2.562171154},
{"learn":[1.823024478],"iteration":382,"passed_time":1.588545498,"remaining_time":2.559092878},
{"learn":[1.822887758],"iteration":383,"passed_time":1.592847791,"remaining_time":2.555193332},
{"learn":[1.822290397],"iteration":384,"passed_time":1.5968221,"remaining_time":2.55076777},
{"learn":[1.822091209],"iteration":385,"passed_time":1.601341136,"remaining_time":2.54721103},
{"learn":[1.821592469],"iteration":386,"passed_time":1.604728408,"remaining_time":2.541856626},
{"learn":[1.821486903],"iteration":387,"passed_time":1.608463214,"remaining_time":2.537060534},
{"learn":[1.82114837],"iteration":388,"passed_time":1.612295893,"remaining_time":2.532423626},
{"learn":[1.8208088],"iteration":389,"passed_time":1.616160115,"remaining_time":2.527840179},
{"learn":[1.820716569],"iteration":390,"passed_time":1.62005596,"remaining_time":2.523309666},
{"learn":[1.820230539],"iteration":391,"passed_time":1.623078793,"remaining_time":2.517428332},
{"learn":[1.8198426],"iteration":392,"passed_time":1.626632354,"remaining_time":2.51238127},
{"learn":[1.819502234],"iteration":393,"passed_time":1.630566296,"remaining_time":2.507926841},
{"learn":[1.819303149],"iteration":394,"passed_time":1.634253492,"remaining_time":2.50309712},
{"learn":[1.81896417],"iteration":395,"passed_time":1.638126205,"remaining_time":2.49855613},
{"learn":[1.818582623],"iteration":396,"passed_time":1.642673325,"remaining_time":2.495042859},
{"learn":[1.818348938],"iteration":397,"passed_time":1.646593805,"remaining_time":2.49057656},
{"learn":[1.818071025],"iteration":398,"passed_time":1.649730186,"remaining_time":2.484931934},
{"learn":[1.817671016],"iteration":399,"passed_time":1.652946625,"remaining_time":2.479419937},
{"learn":[1.817360597],"iteration":400,"passed_time":1.655914347,"remaining_time":2.473547865},
{"learn":[1.817255038],"iteration":401,"passed_time":1.658704643,"remaining_time":2.467426309},
{"learn":[1.817165631],"iteration":402,"passed_time":1.662185631,"remaining_time":2.46234447},
{"learn":[1.816802624],"iteration":403,"passed_time":1.665182861,"remaining_time":2.456556894},
{"learn":[1.816353832],"iteration":404,"passed_time":1.668467976,"remaining_time":2.451206039},
{"learn":[1.816119222],"iteration":405,"passed_time":1.67114585,"remaining_time":2.444976933},
{"learn":[1.815866113],"iteration":406,"passed_time":1.675259057,"remaining_time":2.440856563},
{"learn":[1.815536342],"iteration":407,"passed_time":1.679416455,"remaining_time":2.436800346},
{"learn":[1.815274332],"iteration":408,"passed_time":1.683217344,"remaining_time":2.432228485},
{"learn":[1.81495918],"iteration":409,"passed_time":1.685875873,"remaining_time":2.426016501},
{"learn":[1.814524903],"iteration":410,"passed_time":1.689260884,"remaining_time":2.420862922},
{"learn":[1.814225609],"iteration":411,"passed_time":1.692198851,"remaining_time":2.415079914},
{"learn":[1.813810504],"iteration":412,"passed_time":1.695286239,"remaining_time":2.409523057},
{"learn":[1.813634436],"iteration":413,"passed_time":1.69798721,"remaining_time":2.403431172},
{"learn":[1.813434982],"iteration":414,"passed_time":1.701725583,"remaining_time":2.398817991},
{"learn":[1.813092341],"iteration":415,"passed_time":1.704614158,"remaining_time":2.393016029},
{"learn":[1.812842134],"iteration":416,"passed_time":1.70759744,"remaining_time":2.387360449},
{"learn":[1.812676728],"iteration":417,"passed_time":1.712406584,"remaining_time":2.384259885},
{"learn":[1.812459058],"iteration":418,"passed_time":1.716502581,"remaining_time":2.380162291},
{"learn":[1.812094023],"iteration":419,"passed_time":1.719714227,"remaining_time":2.374843457},
{"learn":[1.811923411],"iteration":420,"passed_time":1.723712401,"remaining_time":2.370616343},
{"learn":[1.811645835],"iteration":421,"passed_time":1.727491102,"remaining_time":2.366089708},
{"learn":[1.811234739],"iteration":422,"passed_time":1.731152417,"remaining_time":2.361406488},
{"learn":[1.811023369],"iteration":423,"passed_time":1.73518404,"remaining_time":2.357231149},
{"learn":[1.810790257],"iteration":424,"passed_time":1.738505575,"remaining_time":2.352095777},
{"learn":[1.810411966],"iteration":425,"passed_time":1.742599667,"remaining_time":2.34800988},
{"learn":[1.810300314],"iteration":426,"passed_time":1.746290947,"remaining_time":2.343383402},
{"learn":[1.809860569],"iteration":427,"passed_time":1.750383813,"remaining_time":2.339297994},
{"learn":[1.809365885],"iteration":428,"passed_time":1.753620761,"remaining_time":2.334073321},
{"learn":[1.809204866],"iteration":429,"passed_time":1.757547253,"remaining_time":2.329771939},
{"learn":[1.80895462],"iteration":430,"passed_time":1.761824351,"remaining_time":2.325935164},
{"learn":[1.808758776],"iteration":431,"passed_time":1.765172292,"remaining_time":2.32087468},
{"learn":[1.808394701],"iteration":432,"passed_time":1.769683682,"remaining_time":2.317345607},
{"learn":[1.808187812],"iteration":433,"passed_time":1.773220126,"remaining_time":2.312540533},
{"learn":[1.808089968],"iteration":434,"passed_time":1.777221519,"remaining_time":2.308345191},
{"learn":[1.807902212],"iteration":435,"passed_time":1.78097379,"remaining_time":2.303828481},
{"learn":[1.80752059],"iteration":436,"passed_time":1.784866788,"remaining_time":2.299496571},
{"learn":[1.807189999],"iteration":437,"passed_time":1.788641817,"remaining_time":2.2950153},
{"learn":[1.807007195],"iteration":438,"passed_time":1.793053736,"remaining_time":2.29135113},
{"learn":[1.806832564],"iteration":439,"passed_time":1.797694905,"remaining_time":2.287975333},
{"learn":[1.806440443],"iteration":440,"passed_time":1.800914639,"remaining_time":2.282792025},
{"learn":[1.806333511],"iteration":441,"passed_time":1.80506503,"remaining_time":2.278792504},
{"learn":[1.806038252],"iteration":442,"passed_time":1.809861429,"remaining_time":2.27560455},
{"learn":[1.805762414],"iteration":443,"passed_time":1.812647105,"remaining_time":2.26989142},
{"learn":[1.805568497],"iteration":444,"passed_time":1.817199304,"remaining_time":2.266394638},
{"learn":[1.805455242],"iteration":445,"passed_time":1.82138191,"remaining_time":2.262434032},
{"learn":[1.80476996],"iteration":446,"passed_time":1.82543653,"remaining_time":2.258314096},
{"learn":[1.804366993],"iteration":447,"passed_time":1.830231482,"remaining_time":2.255106647},
{"learn":[1.804135352],"iteration":448,"passed_time":1.833529902,"remaining_time":2.250055626},
{"learn":[1.803906846],"iteration":449,"passed_time":1.837531367,"remaining_time":2.24587167},
{"learn":[1.803751623],"iteration":450,"passed_time":1.841142093,"remaining_time":2.24121288},
{"learn":[1.80358215],"iteration":451,"passed_time":1.844532165,"remaining_time":2.236291209},
{"learn":[1.803282651],"iteration":452,"passed_time":1.847736351,"remaining_time":2.23115184},
{"learn":[1.802849339],"iteration":453,"passed_time":1.852593607,"remaining_time":2.228009051},
{"learn":[1.802573392],"iteration":454,"passed_time":1.856694926,"remaining_time":2.223953263},
{"learn":[1.802241374],"iteration":455,"passed_time":1.860690513,"remaining_time":2.219771138},
{"learn":[1.801945223],"iteration":456,"passed_time":1.864674493,"remaining_time":2.215576038},
{"learn":[1.801608946],"iteration":457,"passed_time":1.868361045,"remaining_time":2.211029883},
{"learn":[1.801202856],"iteration":458,"passed_time":1.872387271,"remaining_time":2.20688783},
{"learn":[1.801049255],"iteration":459,"passed_time":1.876009823,"remaining_time":2.202272401},
{"learn":[1.800542281],"iteration":460,"passed_time":1.881180681,"remaining_time":2.199471556},
{"learn":[1.800017366],"iteration":461,"passed_time":1.885834686,"remaining_time":2.196058574},
{"learn":[1.79973677],"iteration":462,"passed_time":1.890238475,"remaining_time":2.192350024},
{"learn":[1.799331573],"iteration":463,"passed_time":1.894677968,"remaining_time":2.188679721},
{"learn":[1.799118208],"iteration":464,"passed_time":1.899008034,"remaining_time":2.184880211},
{"learn":[1.79866303],"iteration":465,"passed_time":1.902728099,"remaining_time":2.180379409},
{"learn":[1.798469401],"iteration":466,"passed_time":1.907197062,"remaining_time":2.176736689},
{"learn":[1.798052825],"iteration":467,"passed_time":1.911910221,"remaining_time":2.173368029},
{"learn":[1.797754999],"iteration":468,"passed_time":1.916226791,"remaining_time":2.169544618},
{"learn":[1.797255822],"iteration":469,"passed_time":1.921279145,"remaining_time":2.166548823},
{"learn":[1.796981798],"iteration":470,"passed_time":1.926103933,"remaining_time":2.163288706},
{"learn":[1.79673396],"iteration":471,"passed_time":1.930039612,"remaining_time":2.159027363},
{"learn":[1.796317992],"iteration":472,"passed_time":1.934317093,"remaining_time":2.155148219},
{"learn":[1.796118976],"iteration":473,"passed_time":1.938322847,"remaining_time":2.15096586},
{"learn":[1.795655971],"iteration":474,"passed_time":1.942375573,"remaining_time":2.146836159},
{"learn":[1.795306031],"iteration":475,"passed_time":1.947353389,"remaining_time":2.143725159},
{"learn":[1.795162207],"iteration":476,"passed_time":1.951932574,"remaining_time":2.140169258},
{"learn":[1.794957376],"iteration":477,"passed_time":1.956272004,"remaining_time":2.136347251},
{"learn":[1.794486745],"iteration":478,"passed_time":1.961144071,"remaining_time":2.133102424},
{"learn":[1.794220402],"iteration":479,"passed_time":1.966121903,"remaining_time":2.129965395},
{"learn":[1.793820124],"iteration":480,"passed_time":1.970617699,"remaining_time":2.126300594},
{"learn":[1.793409355],"iteration":481,"passed_time":1.975206907,"remaining_time":2.122732734},
{"learn":[1.793120467],"iteration":482,"passed_time":1.980514985,"remaining_time":2.119930118},
{"learn":[1.792962828],"iteration":483,"passed_time":1.984828518,"remaining_time":2.11605685},
{"learn":[1.792428131],"iteration":484,"passed_time":1.988846438,"remaining_time":2.111867867},
{"learn":[1.792070218],"iteration":485,"passed_time":1.993227369,"remaining_time":2.108063514},
{"learn":[1.791944712],"iteration":486,"passed_time":1.998234649,"remaining_time":2.104916581},
{"learn":[1.791804038],"iteration":487,"passed_time":2.00274967,"remaining_time":2.101245555},
{"learn":[1.791688359],"iteration":488,"passed_time":2.007310683,"remaining_time":2.097619139},
{"learn":[1.791341976],"iteration":489,"passed_time":2.011790998,"remaining_time":2.093904917},
{"learn":[1.790966119],"iteration":490,"passed_time":2.016031223,"remaining_time":2.089938681},
{"learn":[1.790629069],"iteration":491,"passed_time":2.020293563,"remaining_time":2.085994166},
{"learn":[1.790330262],"iteration":492,"passed_time":2.024713304,"remaining_time":2.082210233},
{"learn":[1.790015271],"iteration":493,"passed_time":2.029552793,"remaining_time":2.078853671},
{"learn":[1.789937171],"iteration":494,"passed_time":2.033726888,"remaining_time":2.074812279},
{"learn":[1.789810237],"iteration":495,"passed_time":2.037854094,"remaining_time":2.070722709},
{"learn":[1.789537967],"iteration":496,"passed_time":2.042434585,"remaining_time":2.067091743},
{"learn":[1.789121257],"iteration":497,"passed_time":2.047532661,"remaining_time":2.063978707},
{"learn":[1.78881794],"iteration":498,"passed_time":2.052253399,"remaining_time":2.060478864},
{"learn":[1.788694429],"iteration":499,"passed_time":2.056671867,"remaining_time":2.056671867},
{"learn":[1.788117615],"iteration":500,"passed_time":2.061376816,"remaining_time":2.053147767},
{"learn":[1.787772142],"iteration":501,"passed_time":2.065362855,"remaining_time":2.04890578},
{"learn":[1.787679808],"iteration":502,"passed_time":2.068808003,"remaining_time":2.044130373},
{"learn":[1.787436584],"iteration":503,"passed_time":2.073468974,"remaining_time":2.040556768},
{"learn":[1.787007848],"iteration":504,"passed_time":2.07832484,"remaining_time":2.037169892},
{"learn":[1.786936345],"iteration":505,"passed_time":2.082240091,"remaining_time":2.032858903},
{"learn":[1.786809809],"iteration":506,"passed_time":2.086391091,"remaining_time":2.028778713},
{"learn":[1.78667871],"iteration":507,"passed_time":2.090743346,"remaining_time":2.024893162},
{"learn":[1.786292351],"iteration":508,"passed_time":2.094855818,"remaining_time":2.020774473},
{"learn":[1.785992656],"iteration":509,"passed_time":2.099546179,"remaining_time":2.017211035},
{"learn":[1.785738936],"iteration":510,"passed_time":2.103369574,"remaining_time":2.012813545},
{"learn":[1.785241523],"iteration":511,"passed_time":2.10793979,"remaining_time":2.009130112},
{"learn":[1.785112179],"iteration":512,"passed_time":2.112213336,"remaining_time":2.005161588},
{"learn":[1.784973178],"iteration":513,"passed_time":2.116136352,"remaining_time":2.000860442},
{"learn":[1.784836005],"iteration":514,"passed_time":2.121476173,"remaining_time":1.997895037},
{"learn":[1.784643601],"iteration":515,"passed_time":2.127082517,"remaining_time":1.995170423},
{"learn":[1.7843202],"iteration":516,"passed_time":2.132009408,"remaining_time":1.991799892},
{"learn":[1.784057992],"iteration":517,"passed_time":2.136282756,"remaining_time":1.987815229},
{"learn":[1.783489537],"iteration":518,"passed_time":2.140205688,"remaining_time":1.983504693},
{"learn":[1.783151388],"iteration":519,"passed_time":2.143138805,"remaining_time":1.978281974},
{"learn":[1.782840964],"iteration":520,"passed_time":2.147257999,"remaining_time":1.974158506},
{"learn":[1.782695628],"iteration":521,"passed_time":2.151774467,"remaining_time":1.970398841},
{"learn":[1.782616914],"iteration":522,"passed_time":2.155748285,"remaining_time":1.966141361},
{"learn":[1.782361477],"iteration":523,"passed_time":2.160245001,"remaining_time":1.962359963},
{"learn":[1.78213194],"iteration":524,"passed_time":2.164473855,"remaining_time":1.958333488},
{"learn":[1.781924355],"iteration":525,"passed_time":2.168430595,"remaining_time":1.95406103},
{"learn":[1.78171209],"iteration":526,"passed_time":2.171864512,"remaining_time":1.94932052},
{"learn":[1.781413113],"iteration":527,"passed_time":2.17616947,"remaining_time":1.945363617},
{"learn":[1.781062433],"iteration":528,"passed_time":2.180578143,"remaining_time":1.941497742},
{"learn":[1.780842777],"iteration":529,"passed_time":2.184277098,"remaining_time":1.937000445},
{"learn":[1.780511522],"iteration":530,"passed_time":2.189142199,"remaining_time":1.933536142},
{"learn":[1.780252321],"iteration":531,"passed_time":2.193477099,"remaining_time":1.929600155},
{"learn":[1.779888932],"iteration":532,"passed_time":2.197681048,"remaining_time":1.925547936},
{"learn":[1.77950141],"iteration":533,"passed_time":2.202275735,"remaining_time":1.921836128},
{"learn":[1.779220004],"iteration":534,"passed_time":2.206662712,"remaining_time":1.917940488},
{"learn":[1.778949968],"iteration":535,"passed_time":2.21041145,"remaining_time":1.913490509},
{"learn":[1.778703732],"iteration":536,"passed_time":2.215103259,"remaining_time":1.909856255},
{"learn":[1.77861124],"iteration":537,"passed_time":2.218726315,"remaining_time":1.905300293},
{"learn":[1.778533033],"iteration":538,"passed_time":2.222507366,"remaining_time":1.900882923},
{"learn":[1.778430966],"iteration":539,"passed_time":2.22695624,"remaining_time":1.897036797},
{"learn":[1.778049952],"iteration":540,"passed_time":2.230975323,"remaining_time":1.892823796},
{"learn":[1.77785877],"iteration":541,"passed_time":2.235384261,"remaining_time":1.888940944},
{"learn":[1.777773677],"iteration":542,"passed_time":2.239243273,"remaining_time":1.884593325},
{"learn":[1.777262468],"iteration":543,"passed_time":2.243204521,"remaining_time":1.880333201},
{"learn":[1.776998904],"iteration":544,"passed_time":2.247232755,"remaining_time":1.876130098},
{"learn":[1.776642472],"iteration":545,"passed_time":2.25161274,"remaining_time":1.872220117},
{"learn":[1.776577649],"iteration":546,"passed_time":2.256543928,"remaining_time":1.868764898},
{"learn":[1.776333228],"iteration":547,"passed_time":2.262042847,"remaining_time":1.865772567},
{"learn":[1.776106974],"iteration":548,"passed_time":2.26572718,"remaining_time":1.861280433},
{"learn":[1.775992671],"iteration":549,"passed_time":2.269957708,"remaining_time":1.857238125},
{"learn":[1.775865661],"iteration":550,"passed_time":2.275601023,"remaining_time":1.854346387},
{"learn":[1.775672506],"iteration":551,"passed_time":2.279148397,"remaining_time":1.849743626},
{"learn":[1.775357674],"iteration":552,"passed_time":2.283586961,"remaining_time":1.845865048},
{"learn":[1.775056689],"iteration":553,"passed_time":2.286850018,"remaining_time":1.841038101},
{"learn":[1.774595934],"iteration":554,"passed_time":2.291589766,"remaining_time":1.837400803},
{"learn":[1.774556143],"iteration":555,"passed_time":2.296117445,"remaining_time":1.83359019},
{"learn":[1.774207013],"iteration":556,"passed_time":2.299651282,"remaining_time":1.828986567},
{"learn":[1.773990463],"iteration":557,"passed_time":2.304582354,"remaining_time":1.825493549},
{"learn":[1.773874464],"iteration":558,"passed_time":2.308691295,"remaining_time":1.821346799},
{"learn":[1.773530641],"iteration":559,"passed_time":2.313008644,"remaining_time":1.817363935},
{"learn":[1.773220475],"iteration":560,"passed_time":2.317968096,"remaining_time":1.813882343},
{"learn":[1.772990892],"iteration":561,"passed_time":2.322480454,"remaining_time":1.810047044},
{"learn":[1.772621249],"iteration":562,"passed_time":2.327404449,"remaining_time":1.806528853},
{"learn":[1.772407525],"iteration":563,"passed_time":2.331798076,"remaining_time":1.802595676},
{"learn":[1.772231943],"iteration":564,"passed_time":2.336660329,"remaining_time":1.799021669},
{"learn":[1.771895024],"iteration":565,"passed_time":2.340523621,"remaining_time":1.794677123},
{"learn":[1.771680078],"iteration":566,"passed_time":2.345218918,"remaining_time":1.79096965},
{"learn":[1.771394666],"iteration":567,"passed_time":2.349297559,"remaining_time":1.786789693},
{"learn":[1.771265858],"iteration":568,"passed_time":2.353590388,"remaining_time":1.782772333},
{"learn":[1.771083561],"iteration":569,"passed_time":2.359386187,"remaining_time":1.779887825},
{"learn":[1.77095416],"iteration":570,"passed_time":2.364034441,"remaining_time":1.776130955},
{"learn":[1.770779689],"iteration":571,"passed_time":2.367439945,"remaining_time":1.771441078},
{"learn":[1.770540184],"iteration":572,"passed_time":2.372537981,"remaining_time":1.76801696},
{"learn":[1.770166637],"iteration":573,"passed_time":2.377504749,"remaining_time":1.764489588},
{"learn":[1.769833886],"iteration":574,"passed_time":2.382261873,"remaining_time":1.760802254},
{"learn":[1.769686488],"iteration":575,"passed_time":2.385794968,"remaining_time":1.756210185},
{"learn":[1.769435963],"iteration":576,"passed_time":2.389182042,"remaining_time":1.751514738},
{"learn":[1.769302523],"iteration":577,"passed_time":2.393387609,"remaining_time":1.747421403},
{"learn":[1.769105597],"iteration":578,"passed_time":2.39776625,"remaining_time":1.743453526},
{"learn":[1.768944866],"iteration":579,"passed_time":2.401654304,"remaining_time":1.739128979},
{"learn":[1.768873816],"iteration":580,"passed_time":2.406045379,"remaining_time":1.735168699},
{"learn":[1.768738071],"iteration":581,"passed_time":2.410947367,"remaining_time":1.731573882},
{"learn":[1.768549162],"iteration":582,"passed_time":2.414722337,"remaining_time":1.727168464},
{"learn":[1.768394957],"iteration":583,"passed_time":2.419579902,"remaining_time":1.723536369},
{"learn":[1.768092977],"iteration":584,"passed_time":2.423807407,"remaining_time":1.719453118},
{"learn":[1.76801401],"iteration":585,"passed_time":2.42733593,"remaining_time":1.714875555},
{"learn":[1.767748717],"iteration":586,"passed_time":2.432335191,"remaining_time":1.711336344},
{"learn":[1.767486188],"iteration":587,"passed_time":2.435945364,"remaining_time":1.706818861},
{"learn":[1.767359093],"iteration":588,"passed_time":2.440951459,"remaining_time":1.703278522},
{"learn":[1.767138337],"iteration":589,"passed_time":2.445859449,"remaining_time":1.699665041},
{"learn":[1.767036388],"iteration":590,"passed_time":2.450243803,"remaining_time":1.695684798},
{"learn":[1.766862198],"iteration":591,"passed_time":2.454707953,"remaining_time":1.691758184},
{"learn":[1.766737433],"iteration":592,"passed_time":2.459085536,"remaining_time":1.687770343},
{"learn":[1.766364833],"iteration":593,"passed_time":2.462501994,"remaining_time":1.683124258},
{"learn":[1.766184167],"iteration":594,"passed_time":2.467215498,"remaining_time":1.679365171},
{"learn":[1.766000864],"iteration":595,"passed_time":2.471125651,"remaining_time":1.675058327},
{"learn":[1.765859089],"iteration":596,"passed_time":2.474959141,"remaining_time":1.670701061},
{"learn":[1.765714529],"iteration":597,"passed_time":2.479124854,"remaining_time":1.666568882},
{"learn":[1.765359728],"iteration":598,"passed_time":2.482284542,"remaining_time":1.661763107},
{"learn":[1.765285751],"iteration":599,"passed_time":2.486821638,"remaining_time":1.657881092},
{"learn":[1.765055195],"iteration":600,"passed_time":2.491185394,"remaining_time":1.653881817},
{"learn":[1.764736147],"iteration":601,"passed_time":2.494746727,"remaining_time":1.649350826},
{"learn":[1.764495621],"iteration":602,"passed_time":2.498631755,"remaining_time":1.645036164},
{"learn":[1.764358184],"iteration":603,"passed_time":2.501927558,"remaining_time":1.640336611},
{"learn":[1.76411687],"iteration":604,"passed_time":2.507177028,"remaining_time":1.636917233},
{"learn":[1.763884658],"iteration":605,"passed_time":2.510639656,"remaining_time":1.632330073},
{"learn":[1.763764308],"iteration":606,"passed_time":2.514785086,"remaining_time":1.628188697},
{"learn":[1.763582709],"iteration":607,"passed_time":2.519032897,"remaining_time":1.624113315},
{"learn":[1.763507461],"iteration":608,"passed_time":2.524505946,"remaining_time":1.620824015},
{"learn":[1.763229648],"iteration":609,"passed_time":2.527880314,"remaining_time":1.616185775},
{"learn":[1.763061219],"iteration":610,"passed_time":2.53184912,"remaining_time":1.611930127},
{"learn":[1.762804159],"iteration":611,"passed_time":2.536749398,"remaining_time":1.608265958},
{"learn":[1.762498681],"iteration":612,"passed_time":2.5411874,"remaining_time":1.604305912},
{"learn":[1.762219111],"iteration":613,"passed_time":2.546349195,"remaining_time":1.600799331},
{"learn":[1.762022226],"iteration":614,"passed_time":2.550127261,"remaining_time":1.596421131},
{"learn":[1.7617781],"iteration":615,"passed_time":2.554626106,"remaining_time":1.592494196},
{"learn":[1.7614461],"iteration":616,"passed_time":2.558963581,"remaining_time":1.588465237},
{"learn":[1.761238155],"iteration":617,"passed_time":2.562782671,"remaining_time":1.584114855},
{"learn":[1.761091323],"iteration":618,"passed_time":2.567522094,"remaining_time":1.580332662},
{"learn":[1.760945799],"iteration":619,"passed_time":2.572076257,"remaining_time":1.576433835},
{"learn":[1.760878307],"iteration":620,"passed_time":2.57569172,"remaining_time":1.571960003},
{"learn":[1.760576718],"iteration":621,"passed_time":2.57987022,"remaining_time":1.567831098},
{"learn":[1.760404451],"iteration":622,"passed_time":2.584101786,"remaining_time":1.563734146},
{"learn":[1.760276681],"iteration":623,"passed_time":2.588318333,"remaining_time":1.559627713},
{"learn":[1.760047381],"iteration":624,"passed_time":2.592693643,"remaining_time":1.555616186},
{"learn":[1.75958393],"iteration":625,"passed_time":2.59582248,"remaining_time":1.550858798},
{"learn":[1.759522514],"iteration":626,"passed_time":2.60073727,"remaining_time":1.547169062},
{"learn":[1.759363376],"iteration":627,"passed_time":2.605646302,"remaining_time":1.543472013},
{"learn":[1.75917501],"iteration":628,"passed_time":2.609846008,"remaining_time":1.539352733},
{"learn":[1.759043661],"iteration":629,"passed_time":2.614233701,"remaining_time":1.535343602},
{"learn":[1.758874325],"iteration":630,"passed_time":2.619170014,"remaining_time":1.531654097},
{"learn":[1.758745619],"iteration":631,"passed_time":2.623031662,"remaining_time":1.527334892},
{"learn":[1.758527291],"iteration":632,"passed_time":2.628016936,"remaining_time":1.523668587},
{"learn":[1.758114626],"iteration":633,"passed_time":2.631509965,"remaining_time":1.519136668},
{"learn":[1.757846807],"iteration":634,"passed_time":2.635993641,"remaining_time":1.515177447},
{"learn":[1.757645624],"iteration":635,"passed_time":2.640636416,"remaining_time":1.511307634},
{"learn":[1.757275186],"iteration":636,"passed_time":2.644302192,"remaining_time":1.506878643},
{"learn":[1.756913965],"iteration":637,"passed_time":2.648824701,"remaining_time":1.502938153},
{"learn":[1.756674012],"iteration":638,"passed_time":2.652736889,"remaining_time":1.498651044},
{"learn":[1.756292059],"iteration":639,"passed_time":2.656259758,"remaining_time":1.494146114},
{"learn":[1.756086694],"iteration":640,"passed_time":2.660495227,"remaining_time":1.490043349},
{"learn":[1.75601853],"iteration":641,"passed_time":2.664418959,"remaining_time":1.485766335},
{"learn":[1.755887567],"iteration":642,"passed_time":2.668713108,"remaining_time":1.48169608},
{"learn":[1.755655116],"iteration":643,"passed_time":2.672722971,"remaining_time":1.477467978},
{"learn":[1.755354607],"iteration":644,"passed_time":2.676081742,"remaining_time":1.472882199},
{"learn":[1.755011176],"iteration":645,"passed_time":2.681008844,"remaining_time":1.469159645},
{"learn":[1.754568468],"iteration":646,"passed_time":2.685767971,"remaining_time":1.465341721},
{"learn":[1.75422817],"iteration":647,"passed_time":2.689862114,"remaining_time":1.461159667},
{"learn":[1.754056287],"iteration":648,"passed_time":2.694498868,"remaining_time":1.457271345},
{"learn":[1.753822173],"iteration":649,"passed_time":2.699066198,"remaining_time":1.453343337},
{"learn":[1.753401994],"iteration":650,"passed_time":2.703026071,"remaining_time":1.449087709},
{"learn":[1.753069787],"iteration":651,"passed_time":2.707078308,"remaining_time":1.444882287},
{"learn":[1.752724491],"iteration":652,"passed_time":2.710996673,"remaining_time":1.440606195},
{"learn":[1.752619451],"iteration":653,"passed_time":2.714765203,"remaining_time":1.436251927},
{"learn":[1.752498559],"iteration":654,"passed_time":2.719122959,"remaining_time":1.432209803},
{"learn":[1.752433075],"iteration":655,"passed_time":2.724181944,"remaining_time":1.428534434},
{"learn":[1.752205798],"iteration":656,"passed_time":2.728140023,"remaining_time":1.424280103},
{"learn":[1.751829963],"iteration":657,"passed_time":2.732524493,"remaining_time":1.420248293},
{"learn":[1.751781298],"iteration":658,"passed_time":2.736509709,"remaining_time":1.416008818},
{"learn":[1.751689886],"iteration":659,"passed_time":2.741629129,"remaining_time":1.4123544},
{"learn":[1.751534921],"iteration":660,"passed_time":2.745837823,"remaining_time":1.408228475},
{"learn":[1.75140972],"iteration":661,"passed_time":2.749798931,"remaining_time":1.403975889},
{"learn":[1.751202578],"iteration":662,"passed_time":2.753636523,"remaining_time":1.3996614},
{"learn":[1.750790213],"iteration":663,"passed_time":2.7578109,"remaining_time":1.395518769},
{"learn":[1.750579349],"iteration":664,"passed_time":2.762807541,"remaining_time":1.391790265},
{"learn":[1.750350734],"iteration":665,"passed_time":2.767570626,"remaining_time":1.387940824},
{"learn":[1.750054285],"iteration":666,"passed_time":2.771801401,"remaining_time":1.383822889},
{"learn":[1.749795169],"iteration":667,"passed_time":2.775866131,"remaining_time":1.379622089},
{"learn":[1.7496717],"iteration":668,"passed_time":2.780090949,"remaining_time":1.375500903},
{"learn":[1.749473132],"iteration":669,"passed_time":2.784295207,"remaining_time":1.371369281},
{"learn":[1.74925248],"iteration":670,"passed_time":2.788924755,"remaining_time":1.367445968},
{"learn":[1.749125016],"iteration":671,"passed_time":2.793094567,"remaining_time":1.363296158},
{"learn":[1.748932942],"iteration":672,"passed_time":2.797822598,"remaining_time":1.359417518},
{"learn":[1.748756818],"iteration":673,"passed_time":2.803316357,"remaining_time":1.355906725},
{"learn":[1.748636085],"iteration":674,"passed_time":2.807767077,"remaining_time":1.351887852},
{"learn":[1.748519145],"iteration":675,"passed_time":2.812298072,"remaining_time":1.347906176},
{"learn":[1.748388667],"iteration":676,"passed_time":2.816146338,"remaining_time":1.343597145},
{"learn":[1.748119446],"iteration":677,"passed_time":2.820404853,"remaining_time":1.339484311},
{"learn":[1.747999684],"iteration":678,"passed_time":2.824033577,"remaining_time":1.335073311},
{"learn":[1.747797659],"iteration":679,"passed_time":2.827996761,"remaining_time":1.330822005},
{"learn":[1.747480975],"iteration":680,"passed_time":2.832308184,"remaining_time":1.326734671},
{"learn":[1.74712126],"iteration":681,"passed_time":2.837138776,"remaining_time":1.322888755},
{"learn":[1.74683119],"iteration":682,"passed_time":2.842116337,"remaining_time":1.319108168},
{"learn":[1.746640805],"iteration":683,"passed_time":2.84609949,"remaining_time":1.314864677},
{"learn":[1.746263397],"iteration":684,"passed_time":2.850151181,"remaining_time":1.310653463},
{"learn":[1.746091039],"iteration":685,"passed_time":2.854292922,"remaining_time":1.306483932},
{"learn":[1.745974627],"iteration":686,"passed_time":2.859123365,"remaining_time":1.302628258},
{"learn":[1.745486243],"iteration":687,"passed_time":2.863608787,"remaining_time":1.298613287},
{"learn":[1.745222255],"iteration":688,"passed_time":2.868044272,"remaining_time":1.29457441},
{"learn":[1.744954954],"iteration":689,"passed_time":2.872323341,"remaining_time":1.29046411},
{"learn":[1.744753523],"iteration":690,"passed_time":2.876597526,"remaining_time":1.286351137},
{"learn":[1.744658788],"iteration":691,"passed_time":2.88060496,"remaining_time":1.282118971},
{"learn":[1.744568326],"iteration":692,"passed_time":2.885034888,"remaining_time":1.278074619},
{"learn":[1.744203702],"iteration":693,"passed_time":2.889243979,"remaining_time":1.273931783},
{"learn":[1.743899719],"iteration":694,"passed_time":2.893537643,"remaining_time":1.269825872},
{"learn":[1.743463644],"iteration":695,"passed_time":2.898094166,"remaining_time":1.265834233},
{"learn":[1.743270211],"iteration":696,"passed_time":2.902154549,"remaining_time":1.261625292},
{"learn":[1.743085033],"iteration":697,"passed_time":2.906813928,"remaining_time":1.25767594},
{"learn":[1.742874254],"iteration":698,"passed_time":2.911295993,"remaining_time":1.253648203},
{"learn":[1.742477016],"iteration":699,"passed_time":2.915753373,"remaining_time":1.249608589},
{"learn":[1.742099775],"iteration":700,"passed_time":2.920482141,"remaining_time":1.245683538},
{"learn":[1.741861323],"iteration":701,"passed_time":2.925970496,"remaining_time":1.242078644},
{"learn":[1.741473069],"iteration":702,"passed_time":2.930412936,"remaining_time":1.238026518},
{"learn":[1.741316456],"iteration":703,"passed_time":2.933804717,"remaining_time":1.233531529},
{"learn":[1.741124511],"iteration":704,"passed_time":2.938239471,"remaining_time":1.229476091},
{"learn":[1.740830669],"iteration":705,"passed_time":2.94389465,"remaining_time":1.2259278},
{"learn":[1.74069734],"iteration":706,"passed_time":2.948019894,"remaining_time":1.221739504},
{"learn":[1.740425587],"iteration":707,"passed_time":2.952212875,"remaining_time":1.217579321},
{"learn":[1.740273447],"iteration":708,"passed_time":2.956087273,"remaining_time":1.213288288},
{"learn":[1.740243089],"iteration":709,"passed_time":2.960918375,"remaining_time":1.209389196},
{"learn":[1.739997213],"iteration":710,"passed_time":2.965864367,"remaining_time":1.20553418},
{"learn":[1.739876916],"iteration":711,"passed_time":2.970644012,"remaining_time":1.201608814},
{"learn":[1.739498067],"iteration":712,"passed_time":2.974684498,"remaining_time":1.197383522},
{"learn":[1.739185218],"iteration":713,"passed_time":2.978046405,"remaining_time":1.192886935},
{"learn":[1.738871722],"iteration":714,"passed_time":2.981262575,"remaining_time":1.188335432},
{"learn":[1.738631434],"iteration":715,"passed_time":2.985729837,"remaining_time":1.184283902},
{"learn":[1.738602957],"iteration":716,"passed_time":2.989451351,"remaining_time":1.179936865},
{"learn":[1.738334373],"iteration":717,"passed_time":2.994466867,"remaining_time":1.1760998},
{"learn":[1.738149948],"iteration":718,"passed_time":2.998932652,"remaining_time":1.172044611},
{"learn":[1.738026859],"iteration":719,"passed_time":3.003460846,"remaining_time":1.168012551},
{"learn":[1.737892456],"iteration":720,"passed_time":3.023090245,"remaining_time":1.169822716},
{"learn":[1.737646767],"iteration":721,"passed_time":3.027845945,"remaining_time":1.165846499},
{"learn":[1.737486529],"iteration":722,"passed_time":3.032708222,"remaining_time":1.161908959},
{"learn":[1.73720362],"iteration":723,"passed_time":3.03752479,"remaining_time":1.157951439},
{"learn":[1.736858665],"iteration":724,"passed_time":3.042350595,"remaining_time":1.153995053},
{"learn":[1.736794968],"iteration":725,"passed_time":3.047412122,"remaining_time":1.150125236},
{"learn":[1.736608877],"iteration":726,"passed_time":3.05173725,"remaining_time":1.145975611},
{"learn":[1.736582187],"iteration":727,"passed_time":3.056307017,"remaining_time":1.141916907},
{"learn":[1.73630378],"iteration":728,"passed_time":3.06051145,"remaining_time":1.137720992},
{"learn":[1.736277533],"iteration":729,"passed_time":3.064847286,"remaining_time":1.133573654},
{"learn":[1.736217739],"iteration":730,"passed_time":3.069182434,"remaining_time":1.129425547},
{"learn":[1.73596685],"iteration":731,"passed_time":3.073259406,"remaining_time":1.125182405},
{"learn":[1.735942845],"iteration":732,"passed_time":3.078262502,"remaining_time":1.121277064},
{"learn":[1.735598028],"iteration":733,"passed_time":3.082733604,"remaining_time":1.117175938},
{"learn":[1.735568975],"iteration":734,"passed_time":3.087196885,"remaining_time":1.113070986},
{"learn":[1.73546628],"iteration":735,"passed_time":3.091738971,"remaining_time":1.108993327},
{"learn":[1.735250868],"iteration":736,"passed_time":3.094832339,"remaining_time":1.104397429},
{"learn":[1.734964907],"iteration":737,"passed_time":3.09809088,"remaining_time":1.099864242},
{"learn":[1.734867474],"iteration":738,"passed_time":3.103402143,"remaining_time":1.096059485},
{"learn":[1.734486738],"iteration":739,"passed_time":3.108062843,"remaining_time":1.09202208},
{"learn":[1.734242744],"iteration":740,"passed_time":3.112797124,"remaining_time":1.088008711},
{"learn":[1.734031937],"iteration":741,"passed_time":3.117305506,"remaining_time":1.083914853},
{"learn":[1.733912834],"iteration":742,"passed_time":3.123171457,"remaining_time":1.080289454},
{"learn":[1.733685414],"iteration":743,"passed_time":3.127497374,"remaining_time":1.076128129},
{"learn":[1.733372101],"iteration":744,"passed_time":3.131351008,"remaining_time":1.071804707},
{"learn":[1.73319895],"iteration":745,"passed_time":3.136005438,"remaining_time":1.067755203},
{"learn":[1.732981676],"iteration":746,"passed_time":3.140452315,"remaining_time":1.063633783},
{"learn":[1.732888754],"iteration":747,"passed_time":3.143683436,"remaining_time":1.059101906},
{"learn":[1.732681105],"iteration":748,"passed_time":3.147632397,"remaining_time":1.054814061},
{"learn":[1.732515144],"iteration":749,"passed_time":3.151399851,"remaining_time":1.050466617},
{"learn":[1.732402608],"iteration":750,"passed_time":3.155673951,"remaining_time":1.0462887},
{"learn":[1.732210975],"iteration":751,"passed_time":3.159523531,"remaining_time":1.041970526},
{"learn":[1.731990123],"iteration":752,"passed_time":3.163156777,"remaining_time":1.037582635},
{"learn":[1.731876588],"iteration":753,"passed_time":3.167680728,"remaining_time":1.033487346},
{"learn":[1.731649549],"iteration":754,"passed_time":3.173140663,"remaining_time":1.029694652},
{"learn":[1.731503371],"iteration":755,"passed_time":3.176512904,"remaining_time":1.025223741},
{"learn":[1.731419321],"iteration":756,"passed_time":3.181537802,"remaining_time":1.021286243},
{"learn":[1.731231242],"iteration":757,"passed_time":3.186003741,"remaining_time":1.017167421},
{"learn":[1.731098921],"iteration":758,"passed_time":3.189701892,"remaining_time":1.012803895},
{"learn":[1.730934727],"iteration":759,"passed_time":3.194262622,"remaining_time":1.008714512},
{"learn":[1.730531135],"iteration":760,"passed_time":3.19864127,"remaining_time":1.004566706},
{"learn":[1.730318875],"iteration":761,"passed_time":3.202379431,"remaining_time":1.000218247},
{"learn":[1.730295829],"iteration":762,"passed_time":3.207133976,"remaining_time":0.9961870934},
{"learn":[1.730174366],"iteration":763,"passed_time":3.210297484,"remaining_time":0.9916625735},
{"learn":[1.730003663],"iteration":764,"passed_time":3.214394553,"remaining_time":0.9874283921},
{"learn":[1.729982174],"iteration":765,"passed_time":3.218269949,"remaining_time":0.9831268512},
{"learn":[1.729742002],"iteration":766,"passed_time":3.222252072,"remaining_time":0.9788588432},
{"learn":[1.729401707],"iteration":767,"passed_time":3.225755361,"remaining_time":0.9744469321},
{"learn":[1.729209027],"iteration":768,"passed_time":3.229605874,"remaining_time":0.9701416866},
{"learn":[1.729031457],"iteration":769,"passed_time":3.233325642,"remaining_time":0.9657985684},
{"learn":[1.728768842],"iteration":770,"passed_time":3.238093838,"remaining_time":0.9617684681},
{"learn":[1.728236619],"iteration":771,"passed_time":3.242848227,"remaining_time":0.957732378},
{"learn":[1.727930419],"iteration":772,"passed_time":3.247011923,"remaining_time":0.9535209659},
{"learn":[1.727601825],"iteration":773,"passed_time":3.251974879,"remaining_time":0.9495430525},
{"learn":[1.727475153],"iteration":774,"passed_time":3.256578925,"remaining_time":0.9454583977},
{"learn":[1.727173713],"iteration":775,"passed_time":3.261214316,"remaining_time":0.941381452},
{"learn":[1.726789541],"iteration":776,"passed_time":3.265028606,"remaining_time":0.9370674121},
{"learn":[1.726727927],"iteration":777,"passed_time":3.269958938,"remaining_time":0.933073116},
{"learn":[1.726625902],"iteration":778,"passed_time":3.274090177,"remaining_time":0.9288497166},
{"learn":[1.726515344],"iteration":779,"passed_time":3.277373736,"remaining_time":0.924387464},
{"learn":[1.726459505],"iteration":780,"passed_time":3.281219165,"remaining_time":0.9200857837},
{"learn":[1.726321581],"iteration":781,"passed_time":3.285845257,"remaining_time":0.9160028978},
{"learn":[1.725935808],"iteration":782,"passed_time":3.2899334,"remaining_time":0.9117695373},
{"learn":[1.725650627],"iteration":783,"passed_time":3.2936371,"remaining_time":0.9074306295},
{"learn":[1.725460714],"iteration":784,"passed_time":3.297396764,"remaining_time":0.9031086678},
{"learn":[1.725313381],"iteration":785,"passed_time":3.302043749,"remaining_time":0.899029723},
{"learn":[1.725160735],"iteration":786,"passed_time":3.305665051,"remaining_time":0.8946717354},
{"learn":[1.724812383],"iteration":787,"passed_time":3.310215437,"remaining_time":0.8905655745},
{"learn":[1.724460421],"iteration":788,"passed_time":3.314637988,"remaining_time":0.8864241007},
{"learn":[1.724440767],"iteration":789,"passed_time":3.318967004,"remaining_time":0.8822570518},
{"learn":[1.724387168],"iteration":790,"passed_time":3.323279546,"remaining_time":0.8780852404},
{"learn":[1.724319973],"iteration":791,"passed_time":3.326286614,"remaining_time":0.873570222},
{"learn":[1.724293597],"iteration":792,"passed_time":3.331633011,"remaining_time":0.869669651},
{"learn":[1.724135183],"iteration":793,"passed_time":3.335833113,"remaining_time":0.8654680369},
{"learn":[1.72391803],"iteration":794,"passed_time":3.339023303,"remaining_time":0.861006009},
{"learn":[1.72359071],"iteration":795,"passed_time":3.343281153,"remaining_time":0.8568207979},
{"learn":[1.723389671],"iteration":796,"passed_time":3.34868782,"remaining_time":0.8529280143},
{"learn":[1.723204311],"iteration":797,"passed_time":3.352316007,"remaining_time":0.8485812449},
{"learn":[1.723185792],"iteration":798,"passed_time":3.356154574,"remaining_time":0.8442891981},
{"learn":[1.723079893],"iteration":799,"passed_time":3.359574224,"remaining_time":0.839893556},
{"learn":[1.722805533],"iteration":800,"passed_time":3.364392137,"remaining_time":0.8358477343},
{"learn":[1.722684012],"iteration":801,"passed_time":3.368998233,"remaining_time":0.8317476935},
{"learn":[1.722471564],"iteration":802,"passed_time":3.373397489,"remaining_time":0.8275956481},
{"learn":[1.722370241],"iteration":803,"passed_time":3.377991869,"remaining_time":0.8234905551},
{"learn":[1.722225487],"iteration":804,"passed_time":3.383106894,"remaining_time":0.8195103657},
{"learn":[1.721969237],"iteration":805,"passed_time":3.386625005,"remaining_time":0.8151429913},
{"learn":[1.721830574],"iteration":806,"passed_time":3.39081342,"remaining_time":0.8109380297},
{"learn":[1.721641065],"iteration":807,"passed_time":3.395194086,"remaining_time":0.8067787927},
{"learn":[1.721592459],"iteration":808,"passed_time":3.399468574,"remaining_time":0.8025939403},
{"learn":[1.721326744],"iteration":809,"passed_time":3.404279729,"remaining_time":0.7985347512},
{"learn":[1.721081529],"iteration":810,"passed_time":3.408841969,"remaining_time":0.7944156993},
{"learn":[1.720798237],"iteration":811,"passed_time":3.413882792,"remaining_time":0.7904063607},
{"learn":[1.720744153],"iteration":812,"passed_time":3.418379739,"remaining_time":0.7862693864},
{"learn":[1.720629955],"iteration":813,"passed_time":3.42369555,"remaining_time":0.7823186391},
{"learn":[1.720413461],"iteration":814,"passed_time":3.42887599,"remaining_time":0.7783338136},
{"learn":[1.720216861],"iteration":815,"passed_time":3.433242857,"remaining_time":0.7741626049},
{"learn":[1.719901941],"iteration":816,"passed_time":3.437818313,"remaining_time":0.7700376392},
{"learn":[1.719628527],"iteration":817,"passed_time":3.442326493,"remaining_time":0.7658966035},
{"learn":[1.719534789],"iteration":818,"passed_time":3.446631653,"remaining_time":0.7617098036},
{"learn":[1.719438376],"iteration":819,"passed_time":3.451430281,"remaining_time":0.7576310373},
{"learn":[1.719293206],"iteration":820,"passed_time":3.456152197,"remaining_time":0.7535337921},
{"learn":[1.719212197],"iteration":821,"passed_time":3.460091168,"remaining_time":0.7492654842},
{"learn":[1.718739553],"iteration":822,"passed_time":3.464520243,"remaining_time":0.7451033815},
{"learn":[1.71871708],"iteration":823,"passed_time":3.468949469,"remaining_time":0.7409406633},
{"learn":[1.718419241],"iteration":824,"passed_time":3.473280562,"remaining_time":0.7367564829},
{"learn":[1.718327588],"iteration":825,"passed_time":3.478501308,"remaining_time":0.7327593553},
{"learn":[1.718234681],"iteration":826,"passed_time":3.482550732,"remaining_time":0.7285142403},
{"learn":[1.718070176],"iteration":827,"passed_time":3.487136563,"remaining_time":0.7243810252},
{"learn":[1.717847246],"iteration":828,"passed_time":3.49211849,"remaining_time":0.7203284219},
{"learn":[1.717703027],"iteration":829,"passed_time":3.496403027,"remaining_time":0.7161307404},
{"learn":[1.717418173],"iteration":830,"passed_time":3.500679525,"remaining_time":0.711931215},
{"learn":[1.717228034],"iteration":831,"passed_time":3.505352898,"remaining_time":0.7078116428},
{"learn":[1.716963451],"iteration":832,"passed_time":3.510012509,"remaining_time":0.703687982},
{"learn":[1.716627281],"iteration":833,"passed_time":3.514117267,"remaining_time":0.6994525975},
{"learn":[1.716432176],"iteration":834,"passed_time":3.518835446,"remaining_time":0.6953387408},
{"learn":[1.716370309],"iteration":835,"passed_time":3.522138135,"remaining_time":0.6909457586},
{"learn":[1.716196417],"iteration":836,"passed_time":3.527614958,"remaining_time":0.6869787791},
{"learn":[1.716085711],"iteration":837,"passed_time":3.531966974,"remaining_time":0.6827907515},
{"learn":[1.715904665],"iteration":838,"passed_time":3.53649084,"remaining_time":0.6786353102},
{"learn":[1.715718769],"iteration":839,"passed_time":3.540391304,"remaining_time":0.6743602485},
{"learn":[1.715421511],"iteration":840,"passed_time":3.545153231,"remaining_time":0.6702489462},
{"learn":[1.715326279],"iteration":841,"passed_time":3.549512711,"remaining_time":0.66606058},
{"learn":[1.715199218],"iteration":842,"passed_time":3.554425878,"remaining_time":0.6619749262},
{"learn":[1.714958189],"iteration":843,"passed_time":3.558668474,"remaining_time":0.6577633672},
{"learn":[1.714630218],"iteration":844,"passed_time":3.563327461,"remaining_time":0.6536281141},
{"learn":[1.714346482],"iteration":845,"passed_time":3.56817745,"remaining_time":0.6495263915},
{"learn":[1.714071341],"iteration":846,"passed_time":3.573274356,"remaining_time":0.6454675046},
{"learn":[1.713977225],"iteration":847,"passed_time":3.577627565,"remaining_time":0.6412728655},
{"learn":[1.713870686],"iteration":848,"passed_time":3.582171539,"remaining_time":0.6371117814},
{"learn":[1.713829363],"iteration":849,"passed_time":3.588354867,"remaining_time":0.6332390942},
{"learn":[1.713463846],"iteration":850,"passed_time":3.592863056,"remaining_time":0.6290676795},
{"learn":[1.713241447],"iteration":851,"passed_time":3.596901952,"remaining_time":0.6248139541},
{"learn":[1.713103986],"iteration":852,"passed_time":3.602316318,"remaining_time":0.6207977712},
{"learn":[1.712882464],"iteration":853,"passed_time":3.607102984,"remaining_time":0.6166710019},
{"learn":[1.712783055],"iteration":854,"passed_time":3.610910712,"remaining_time":0.6123766704},
{"learn":[1.712560164],"iteration":855,"passed_time":3.614369362,"remaining_time":0.6080247526},
{"learn":[1.712467079],"iteration":856,"passed_time":3.618363407,"remaining_time":0.6037642558},
{"learn":[1.712037288],"iteration":857,"passed_time":3.622693118,"remaining_time":0.5995599333},
{"learn":[1.711801177],"iteration":858,"passed_time":3.626642296,"remaining_time":0.5952928565},
{"learn":[1.711715158],"iteration":859,"passed_time":3.630963934,"remaining_time":0.591087152},
{"learn":[1.711452264],"iteration":860,"passed_time":3.634521885,"remaining_time":0.5867578885},
{"learn":[1.711114132],"iteration":861,"passed_time":3.638900429,"remaining_time":0.5825617856},
{"learn":[1.710869113],"iteration":862,"passed_time":3.643380458,"remaining_time":0.5783813705},
{"learn":[1.710537021],"iteration":863,"passed_time":3.648349217,"remaining_time":0.5742771915},
{"learn":[1.710487001],"iteration":864,"passed_time":3.65296993,"remaining_time":0.5701166943},
{"learn":[1.710404977],"iteration":865,"passed_time":3.657218771,"remaining_time":0.5658975927},
{"learn":[1.710135264],"iteration":866,"passed_time":3.661338945,"remaining_time":0.5616586848},
{"learn":[1.709852064],"iteration":867,"passed_time":3.666517687,"remaining_time":0.5575810307},
{"learn":[1.70979853],"iteration":868,"passed_time":3.670662345,"remaining_time":0.5533449565},
{"learn":[1.709541907],"iteration":869,"passed_time":3.674901389,"remaining_time":0.5491231961},
{"learn":[1.709410418],"iteration":870,"passed_time":3.679867523,"remaining_time":0.545009082},
{"learn":[1.709161294],"iteration":871,"passed_time":3.684889412,"remaining_time":0.5409011981},
{"learn":[1.708877695],"iteration":872,"passed_time":3.69002072,"remaining_time":0.536807138},
{"learn":[1.70882684],"iteration":873,"passed_time":3.693643677,"remaining_time":0.5324932533},
{"learn":[1.708696188],"iteration":874,"passed_time":3.698809743,"remaining_time":0.5284013918},
{"learn":[1.708508839],"iteration":875,"passed_time":3.703217747,"remaining_time":0.5241997724},
{"learn":[1.708404637],"iteration":876,"passed_time":3.706701612,"remaining_time":0.519868071},
{"learn":[1.708275043],"iteration":877,"passed_time":3.709991931,"remaining_time":0.5155114073},
{"learn":[1.708147946],"iteration":878,"passed_time":3.714432223,"remaining_time":0.511315471},
{"learn":[1.707883978],"iteration":879,"passed_time":3.718860123,"remaining_time":0.5071172895},
{"learn":[1.707761691],"iteration":880,"passed_time":3.722472454,"remaining_time":0.5028084246},
{"learn":[1.707557796],"iteration":881,"passed_time":3.726379399,"remaining_time":0.4985405545},
{"learn":[1.707372857],"iteration":882,"passed_time":3.731239943,"remaining_time":0.4943998566},
{"learn":[1.707191587],"iteration":883,"passed_time":3.735144983,"remaining_time":0.490132147},
{"learn":[1.707104155],"iteration":884,"passed_time":3.739129445,"remaining_time":0.4858755776},
{"learn":[1.706916675],"iteration":885,"passed_time":3.743779003,"remaining_time":0.481705199},
{"learn":[1.706679183],"iteration":886,"passed_time":3.748616324,"remaining_time":0.4775576602},
{"learn":[1.70651136],"iteration":887,"passed_time":3.752903321,"remaining_time":0.4733391576},
{"learn":[1.706271907],"iteration":888,"passed_time":3.756309361,"remaining_time":0.4690105051},
{"learn":[1.705995027],"iteration":889,"passed_time":3.761182997,"remaining_time":0.4648653143},
{"learn":[1.705825492],"iteration":890,"passed_time":3.766452746,"remaining_time":0.4607669465},
{"learn":[1.705685094],"iteration":891,"passed_time":3.771236386,"remaining_time":0.4566070961},
{"learn":[1.705456897],"iteration":892,"passed_time":3.777195781,"remaining_time":0.4525867285},
{"learn":[1.705324439],"iteration":893,"passed_time":3.781841799,"remaining_time":0.4484062983},
{"learn":[1.705207092],"iteration":894,"passed_time":3.785868296,"remaining_time":0.4441521465},
{"learn":[1.704687228],"iteration":895,"passed_time":3.789135621,"remaining_time":0.4398103846},
{"learn":[1.704413706],"iteration":896,"passed_time":3.79380469,"remaining_time":0.4356319766},
{"learn":[1.704320334],"iteration":897,"passed_time":3.797639538,"remaining_time":0.4313577203},
{"learn":[1.704139787],"iteration":898,"passed_time":3.802258209,"remaining_time":0.4271725018},
{"learn":[1.703856498],"iteration":899,"passed_time":3.80664139,"remaining_time":0.4229601544},
{"learn":[1.703580526],"iteration":900,"passed_time":3.810878037,"remaining_time":0.418731327},
{"learn":[1.703472007],"iteration":901,"passed_time":3.815412484,"remaining_time":0.4145348375},
{"learn":[1.703204116],"iteration":902,"passed_time":3.81960411,"remaining_time":0.4103007737},
{"learn":[1.702979733],"iteration":903,"passed_time":3.823487193,"remaining_time":0.4060340382},
{"learn":[1.70266322],"iteration":904,"passed_time":3.827950676,"remaining_time":0.4018290765},
{"learn":[1.702382039],"iteration":905,"passed_time":3.832218154,"remaining_time":0.3976032081},
{"learn":[1.702175346],"iteration":906,"passed_time":3.836296955,"remaining_time":0.3933579017},
{"learn":[1.701971567],"iteration":907,"passed_time":3.839931626,"remaining_time":0.3890679621},
{"learn":[1.701565961],"iteration":908,"passed_time":3.844232679,"remaining_time":0.3848461758},
{"learn":[1.701353386],"iteration":909,"passed_time":3.849118178,"remaining_time":0.3806820176},
{"learn":[1.701146134],"iteration":910,"passed_time":3.853351889,"remaining_time":0.3764525995},
{"learn":[1.700888563],"iteration":911,"passed_time":3.857745939,"remaining_time":0.3722386432},
{"learn":[1.700799733],"iteration":912,"passed_time":3.862908692,"remaining_time":0.3680975424},
{"learn":[1.700629343],"iteration":913,"passed_time":3.867331646,"remaining_time":0.3638845969},
{"learn":[1.700480437],"iteration":914,"passed_time":3.870366046,"remaining_time":0.359542201},
{"learn":[1.700347917],"iteration":915,"passed_time":3.874570395,"remaining_time":0.3553099489},
{"learn":[1.700097894],"iteration":916,"passed_time":3.878876041,"remaining_time":0.3510869263},
{"learn":[1.699834347],"iteration":917,"passed_time":3.883734827,"remaining_time":0.3469131327},
{"learn":[1.699611398],"iteration":918,"passed_time":3.887848452,"remaining_time":0.3426721704},
{"learn":[1.699465151],"iteration":919,"passed_time":3.892616859,"remaining_time":0.3384884225},
{"learn":[1.699345502],"iteration":920,"passed_time":3.896831385,"remaining_time":0.3342558951},
{"learn":[1.699116017],"iteration":921,"passed_time":3.901271805,"remaining_time":0.3300425171},
{"learn":[1.699017754],"iteration":922,"passed_time":3.905485791,"remaining_time":0.3258097572},
{"learn":[1.698917922],"iteration":923,"passed_time":3.910528002,"remaining_time":0.3216451604},
{"learn":[1.698833456],"iteration":924,"passed_time":3.914750564,"remaining_time":0.3174122079},
{"learn":[1.69858423],"iteration":925,"passed_time":3.918663931,"remaining_time":0.313154569},
{"learn":[1.698486259],"iteration":926,"passed_time":3.923037081,"remaining_time":0.3089338801},
{"learn":[1.698143126],"iteration":927,"passed_time":3.927983835,"remaining_time":0.3047573665},
{"learn":[1.697948496],"iteration":928,"passed_time":3.932439573,"remaining_time":0.3005416681},
{"learn":[1.697861121],"iteration":929,"passed_time":3.936479588,"remaining_time":0.2962941625},
{"learn":[1.69774727],"iteration":930,"passed_time":3.939452638,"remaining_time":0.2919680258},
{"learn":[1.69758405],"iteration":931,"passed_time":3.9438096,"remaining_time":0.2877457648},
{"learn":[1.69742072],"iteration":932,"passed_time":3.948765858,"remaining_time":0.2835662513},
{"learn":[1.697170679],"iteration":933,"passed_time":3.951439315,"remaining_time":0.2792237632},
{"learn":[1.697043688],"iteration":934,"passed_time":3.956343939,"remaining_time":0.275039953},
{"learn":[1.696888246],"iteration":935,"passed_time":3.961071597,"remaining_time":0.2708425024},
{"learn":[1.696607052],"iteration":936,"passed_time":3.965820303,"remaining_time":0.2666453352},
{"learn":[1.696468463],"iteration":937,"passed_time":3.969969501,"remaining_time":0.2624073657},
{"learn":[1.696269048],"iteration":938,"passed_time":3.97441239,"remaining_time":0.2581886643},
{"learn":[1.69618037],"iteration":939,"passed_time":3.978816734,"remaining_time":0.2539670256},
{"learn":[1.695981576],"iteration":940,"passed_time":3.983542363,"remaining_time":0.2497651428},
{"learn":[1.695864062],"iteration":941,"passed_time":3.988628493,"remaining_time":0.2455843446},
{"learn":[1.695669237],"iteration":942,"passed_time":3.99390922,"remaining_time":0.2414133887},
{"learn":[1.695213215],"iteration":943,"passed_time":3.997689247,"remaining_time":0.237151057},
{"learn":[1.694936558],"iteration":944,"passed_time":4.001175997,"remaining_time":0.2328726771},
{"learn":[1.694732753],"iteration":945,"passed_time":4.005412454,"remaining_time":0.2286387659},
{"learn":[1.694513617],"iteration":946,"passed_time":4.009865689,"remaining_time":0.2244169815},
{"learn":[1.694425039],"iteration":947,"passed_time":4.013593038,"remaining_time":0.2201548924},
{"learn":[1.694335599],"iteration":948,"passed_time":4.017775507,"remaining_time":0.2159183887},
{"learn":[1.694216099],"iteration":949,"passed_time":4.022649007,"remaining_time":0.2117183688},
{"learn":[1.693960739],"iteration":950,"passed_time":4.027019027,"remaining_time":0.2074909909},
{"learn":[1.693787431],"iteration":951,"passed_time":4.031173947,"remaining_time":0.2032524679},
{"learn":[1.693628962],"iteration":952,"passed_time":4.035398484,"remaining_time":0.1990175538},
{"learn":[1.693518001],"iteration":953,"passed_time":4.03988797,"remaining_time":0.1947954367},
{"learn":[1.693275263],"iteration":954,"passed_time":4.044452883,"remaining_time":0.1905763138},
{"learn":[1.69310163],"iteration":955,"passed_time":4.048260359,"remaining_time":0.1863216065},
{"learn":[1.692961059],"iteration":956,"passed_time":4.052371645,"remaining_time":0.1820814846},
{"learn":[1.692868729],"iteration":957,"passed_time":4.057279126,"remaining_time":0.1778765379},
{"learn":[1.692604656],"iteration":958,"passed_time":4.062012188,"remaining_time":0.1736626692},
{"learn":[1.692489979],"iteration":959,"passed_time":4.065988561,"remaining_time":0.16941619},
{"learn":[1.692068402],"iteration":960,"passed_time":4.070269501,"remaining_time":0.1651826332},
{"learn":[1.691987687],"iteration":961,"passed_time":4.074689292,"remaining_time":0.1609544627},
{"learn":[1.69187135],"iteration":962,"passed_time":4.078836977,"remaining_time":0.1567154394},
{"learn":[1.691522917],"iteration":963,"passed_time":4.082814875,"remaining_time":0.152470265},
{"learn":[1.691353441],"iteration":964,"passed_time":4.086727208,"remaining_time":0.1482232666},
{"learn":[1.691207186],"iteration":965,"passed_time":4.09180825,"remaining_time":0.1440180958},
{"learn":[1.690995492],"iteration":966,"passed_time":4.096119709,"remaining_time":0.1397848505},
{"learn":[1.690673462],"iteration":967,"passed_time":4.100014251,"remaining_time":0.1355376612},
{"learn":[1.69034089],"iteration":968,"passed_time":4.104993343,"remaining_time":0.1313258964},
{"learn":[1.689982723],"iteration":969,"passed_time":4.109741587,"remaining_time":0.1271054099},
{"learn":[1.689870894],"iteration":970,"passed_time":4.113845746,"remaining_time":0.1228646},
{"learn":[1.68971599],"iteration":971,"passed_time":4.117465291,"remaining_time":0.1186101113},
{"learn":[1.689611498],"iteration":972,"passed_time":4.121327451,"remaining_time":0.11436366},
{"learn":[1.689278599],"iteration":973,"passed_time":4.124509179,"remaining_time":0.1100998343},
{"learn":[1.689097898],"iteration":974,"passed_time":4.12913525,"remaining_time":0.1058752628},
{"learn":[1.688777261],"iteration":975,"passed_time":4.133867569,"remaining_time":0.1016524812},
{"learn":[1.688497689],"iteration":976,"passed_time":4.139616884,"remaining_time":0.0974525981},
{"learn":[1.688281916],"iteration":977,"passed_time":4.143958548,"remaining_time":0.09321788144},
{"learn":[1.687978247],"iteration":978,"passed_time":4.147731963,"remaining_time":0.08897075712},
{"learn":[1.68770241],"iteration":979,"passed_time":4.152262594,"remaining_time":0.08474005294},
{"learn":[1.687586834],"iteration":980,"passed_time":4.156680924,"remaining_time":0.08050656224},
{"learn":[1.687463799],"iteration":981,"passed_time":4.160792967,"remaining_time":0.07626708087},
{"learn":[1.687382514],"iteration":982,"passed_time":4.164778161,"remaining_time":0.07202566505},
{"learn":[1.687304513],"iteration":983,"passed_time":4.169365749,"remaining_time":0.06779456502},
{"learn":[1.687067729],"iteration":984,"passed_time":4.17333854,"remaining_time":0.06355337878},
{"learn":[1.686992935],"iteration":985,"passed_time":4.177086254,"remaining_time":0.05930954113},
{"learn":[1.686921113],"iteration":986,"passed_time":4.182083813,"remaining_time":0.05508317078},
{"learn":[1.686852128],"iteration":987,"passed_time":4.187121162,"remaining_time":0.05085572261},
{"learn":[1.686671063],"iteration":988,"passed_time":4.191329221,"remaining_time":0.04661741298},
{"learn":[1.686567007],"iteration":989,"passed_time":4.196067954,"remaining_time":0.04238452479},
{"learn":[1.686312496],"iteration":990,"passed_time":4.200922196,"remaining_time":0.03815166475},
{"learn":[1.686134455],"iteration":991,"passed_time":4.204850072,"remaining_time":0.03391008123},
{"learn":[1.685961091],"iteration":992,"passed_time":4.208660262,"remaining_time":0.02966829993},
{"learn":[1.685876886],"iteration":993,"passed_time":4.212450545,"remaining_time":0.02542726687},
{"learn":[1.685797904],"iteration":994,"passed_time":4.217393595,"remaining_time":0.02119293264},
{"learn":[1.685723723],"iteration":995,"passed_time":4.221181946,"remaining_time":0.01695253793},
{"learn":[1.685635029],"iteration":996,"passed_time":4.225699377,"remaining_time":0.01271524386},
{"learn":[1.685567444],"iteration":997,"passed_time":4.230291852,"remaining_time":0.008477538781},
{"learn":[1.685272083],"iteration":998,"passed_time":4.235266208,"remaining_time":0.004239505714},
{"learn":[1.685111521],"iteration":999,"passed_time":4.239291376,"remaining_time":0}
]}
\ No newline at end of file
iter RMSE
0 4.066425663
1 3.872139211
2 3.694881633
3 3.529475327
4 3.378025017
5 3.242220564
6 3.116929716
7 3.001867662
8 2.895036703
9 2.800810579
10 2.714778659
11 2.6385351
12 2.568037007
13 2.504107964
14 2.448639679
15 2.396911188
16 2.35246371
17 2.311553697
18 2.273535233
19 2.243176794
20 2.213419896
21 2.186844053
22 2.164298857
23 2.144727151
24 2.126026781
25 2.10936523
26 2.093813358
27 2.08106308
28 2.069160574
29 2.059446075
30 2.050142587
31 2.042211161
32 2.035159576
33 2.028504243
34 2.022159325
35 2.015729363
36 2.01175385
37 2.00736154
38 2.003280734
39 1.999848901
40 1.996850175
41 1.994077786
42 1.991101373
43 1.988782323
44 1.98694476
45 1.985258122
46 1.983819836
47 1.982268067
48 1.980972246
49 1.979088298
50 1.97772851
51 1.976163702
52 1.974979152
53 1.97292109
54 1.970434948
55 1.969842844
56 1.969106854
57 1.967430609
58 1.966603735
59 1.964990882
60 1.963564592
61 1.961689398
62 1.961456558
63 1.960592468
64 1.959346171
65 1.958453144
66 1.957745233
67 1.956743102
68 1.955940597
69 1.955461494
70 1.95420123
71 1.953440047
72 1.952746745
73 1.952127586
74 1.951411553
75 1.951219197
76 1.949951904
77 1.949757257
78 1.9488718
79 1.947643165
80 1.947011048
81 1.946705587
82 1.945890507
83 1.94498414
84 1.943645022
85 1.942750278
86 1.94248305
87 1.941491203
88 1.941208685
89 1.940315839
90 1.939282311
91 1.939006518
92 1.938030116
93 1.937144761
94 1.936148768
95 1.935706384
96 1.935421463
97 1.934763923
98 1.934407433
99 1.934079101
100 1.933024363
101 1.93250729
102 1.931651677
103 1.930946345
104 1.930522678
105 1.930218738
106 1.929887223
107 1.929639763
108 1.929231468
109 1.928441191
110 1.927332482
111 1.926989433
112 1.926278957
113 1.925381981
114 1.925133134
115 1.924265591
116 1.923923955
117 1.923367478
118 1.922716498
119 1.92234057
120 1.922114333
121 1.921911605
122 1.921626808
123 1.921409923
124 1.921041978
125 1.920267207
126 1.920061582
127 1.919682021
128 1.919139101
129 1.918505365
130 1.917920423
131 1.917738848
132 1.917322612
133 1.916970046
134 1.916080162
135 1.915716055
136 1.915171449
137 1.915077803
138 1.914641475
139 1.914018347
140 1.913583179
141 1.913204995
142 1.912871082
143 1.912544026
144 1.912066723
145 1.91133261
146 1.911124803
147 1.910856507
148 1.910235958
149 1.90970324
150 1.908946001
151 1.908705846
152 1.908176272
153 1.907573781
154 1.907195577
155 1.906544654
156 1.905984288
157 1.905316811
158 1.904773916
159 1.904368194
160 1.903704148
161 1.903230065
162 1.902767039
163 1.901946053
164 1.901518774
165 1.901061049
166 1.900571146
167 1.900226933
168 1.899736802
169 1.899507889
170 1.898463745
171 1.898105464
172 1.897633913
173 1.897296504
174 1.896764636
175 1.896459699
176 1.896234817
177 1.895774452
178 1.895336109
179 1.894834206
180 1.894456369
181 1.894215026
182 1.893713816
183 1.893195993
184 1.893028497
185 1.89252859
186 1.892274852
187 1.891843813
188 1.891466712
189 1.890739811
190 1.89030705
191 1.890045677
192 1.889436593
193 1.888971253
194 1.888196676
195 1.887782421
196 1.887117193
197 1.886728062
198 1.886336947
199 1.88604758
200 1.88558347
201 1.885181876
202 1.884783278
203 1.884241901
204 1.883962923
205 1.883577929
206 1.883269504
207 1.882710257
208 1.882293493
209 1.882068287
210 1.881405669
211 1.881084604
212 1.880666473
213 1.88018588
214 1.87983598
215 1.879322799
216 1.878750751
217 1.878387985
218 1.878188491
219 1.877689677
220 1.877216739
221 1.876586796
222 1.876298688
223 1.876124079
224 1.875467359
225 1.875020674
226 1.874594111
227 1.874345228
228 1.873808119
229 1.873378623
230 1.87270759
231 1.87237129
232 1.872200317
233 1.871846801
234 1.871205464
235 1.87080321
236 1.870267455
237 1.869477043
238 1.869323921
239 1.868948175
240 1.868682513
241 1.867953316
242 1.867625093
243 1.867137561
244 1.866638168
245 1.866422242
246 1.866022843
247 1.865668211
248 1.865333611
249 1.864857651
250 1.864146818
251 1.863423449
252 1.863057274
253 1.862498682
254 1.862128056
255 1.861613225
256 1.86092202
257 1.860695122
258 1.860207232
259 1.859885452
260 1.859540208
261 1.859263173
262 1.858558054
263 1.858267444
264 1.857970097
265 1.857634673
266 1.857327857
267 1.856925828
268 1.856602775
269 1.856355469
270 1.85603022
271 1.855627428
272 1.855084232
273 1.8547845
274 1.854607838
275 1.854326147
276 1.854216449
277 1.853983002
278 1.85349512
279 1.853389361
280 1.853068743
281 1.852787951
282 1.852302429
283 1.851741787
284 1.851486613
285 1.851225018
286 1.851032882
287 1.850735112
288 1.850505115
289 1.850191947
290 1.849754283
291 1.849426528
292 1.848914827
293 1.848675822
294 1.848458061
295 1.848291643
296 1.84811723
297 1.847701067
298 1.847412068
299 1.847066085
300 1.846772717
301 1.846485156
302 1.84619028
303 1.845904766
304 1.845541671
305 1.845280462
306 1.845041242
307 1.844941465
308 1.844573286
309 1.844296317
310 1.843458118
311 1.843295607
312 1.843171152
313 1.842828409
314 1.84233527
315 1.84190774
316 1.84165643
317 1.841402802
318 1.840944829
319 1.840789762
320 1.840672153
321 1.84035102
322 1.840219253
323 1.840145416
324 1.839879274
325 1.839766243
326 1.839399561
327 1.83916424
328 1.83897284
329 1.838705164
330 1.838478758
331 1.838078363
332 1.837705005
333 1.837466608
334 1.837230816
335 1.837011978
336 1.836815256
337 1.836670592
338 1.836280063
339 1.835897815
340 1.835746671
341 1.835500402
342 1.835394213
343 1.83508335
344 1.834913248
345 1.834699749
346 1.834515758
347 1.834327839
348 1.833955019
349 1.833500385
350 1.833366051
351 1.833106884
352 1.832662953
353 1.832205292
354 1.831638443
355 1.831208934
356 1.831051311
357 1.830741101
358 1.83042774
359 1.830151187
360 1.830051594
361 1.829317686
362 1.829026629
363 1.828737363
364 1.828480856
365 1.82782878
366 1.827732886
367 1.827450937
368 1.826898272
369 1.82648536
370 1.826275925
371 1.826084982
372 1.825648532
373 1.825411659
374 1.825109554
375 1.824992388
376 1.824544021
377 1.824317376
378 1.824105103
379 1.823721745
380 1.823513241
381 1.823258007
382 1.823024478
383 1.822887758
384 1.822290397
385 1.822091209
386 1.821592469
387 1.821486903
388 1.82114837
389 1.8208088
390 1.820716569
391 1.820230539
392 1.8198426
393 1.819502234
394 1.819303149
395 1.81896417
396 1.818582623
397 1.818348938
398 1.818071025
399 1.817671016
400 1.817360597
401 1.817255038
402 1.817165631
403 1.816802624
404 1.816353832
405 1.816119222
406 1.815866113
407 1.815536342
408 1.815274332
409 1.81495918
410 1.814524903
411 1.814225609
412 1.813810504
413 1.813634436
414 1.813434982
415 1.813092341
416 1.812842134
417 1.812676728
418 1.812459058
419 1.812094023
420 1.811923411
421 1.811645835
422 1.811234739
423 1.811023369
424 1.810790257
425 1.810411966
426 1.810300314
427 1.809860569
428 1.809365885
429 1.809204866
430 1.80895462
431 1.808758776
432 1.808394701
433 1.808187812
434 1.808089968
435 1.807902212
436 1.80752059
437 1.807189999
438 1.807007195
439 1.806832564
440 1.806440443
441 1.806333511
442 1.806038252
443 1.805762414
444 1.805568497
445 1.805455242
446 1.80476996
447 1.804366993
448 1.804135352
449 1.803906846
450 1.803751623
451 1.80358215
452 1.803282651
453 1.802849339
454 1.802573392
455 1.802241374
456 1.801945223
457 1.801608946
458 1.801202856
459 1.801049255
460 1.800542281
461 1.800017366
462 1.79973677
463 1.799331573
464 1.799118208
465 1.79866303
466 1.798469401
467 1.798052825
468 1.797754999
469 1.797255822
470 1.796981798
471 1.79673396
472 1.796317992
473 1.796118976
474 1.795655971
475 1.795306031
476 1.795162207
477 1.794957376
478 1.794486745
479 1.794220402
480 1.793820124
481 1.793409355
482 1.793120467
483 1.792962828
484 1.792428131
485 1.792070218
486 1.791944712
487 1.791804038
488 1.791688359
489 1.791341976
490 1.790966119
491 1.790629069
492 1.790330262
493 1.790015271
494 1.789937171
495 1.789810237
496 1.789537967
497 1.789121257
498 1.78881794
499 1.788694429
500 1.788117615
501 1.787772142
502 1.787679808
503 1.787436584
504 1.787007848
505 1.786936345
506 1.786809809
507 1.78667871
508 1.786292351
509 1.785992656
510 1.785738936
511 1.785241523
512 1.785112179
513 1.784973178
514 1.784836005
515 1.784643601
516 1.7843202
517 1.784057992
518 1.783489537
519 1.783151388
520 1.782840964
521 1.782695628
522 1.782616914
523 1.782361477
524 1.78213194
525 1.781924355
526 1.78171209
527 1.781413113
528 1.781062433
529 1.780842777
530 1.780511522
531 1.780252321
532 1.779888932
533 1.77950141
534 1.779220004
535 1.778949968
536 1.778703732
537 1.77861124
538 1.778533033
539 1.778430966
540 1.778049952
541 1.77785877
542 1.777773677
543 1.777262468
544 1.776998904
545 1.776642472
546 1.776577649
547 1.776333228
548 1.776106974
549 1.775992671
550 1.775865661
551 1.775672506
552 1.775357674
553 1.775056689
554 1.774595934
555 1.774556143
556 1.774207013
557 1.773990463
558 1.773874464
559 1.773530641
560 1.773220475
561 1.772990892
562 1.772621249
563 1.772407525
564 1.772231943
565 1.771895024
566 1.771680078
567 1.771394666
568 1.771265858
569 1.771083561
570 1.77095416
571 1.770779689
572 1.770540184
573 1.770166637
574 1.769833886
575 1.769686488
576 1.769435963
577 1.769302523
578 1.769105597
579 1.768944866
580 1.768873816
581 1.768738071
582 1.768549162
583 1.768394957
584 1.768092977
585 1.76801401
586 1.767748717
587 1.767486188
588 1.767359093
589 1.767138337
590 1.767036388
591 1.766862198
592 1.766737433
593 1.766364833
594 1.766184167
595 1.766000864
596 1.765859089
597 1.765714529
598 1.765359728
599 1.765285751
600 1.765055195
601 1.764736147
602 1.764495621
603 1.764358184
604 1.76411687
605 1.763884658
606 1.763764308
607 1.763582709
608 1.763507461
609 1.763229648
610 1.763061219
611 1.762804159
612 1.762498681
613 1.762219111
614 1.762022226
615 1.7617781
616 1.7614461
617 1.761238155
618 1.761091323
619 1.760945799
620 1.760878307
621 1.760576718
622 1.760404451
623 1.760276681
624 1.760047381
625 1.75958393
626 1.759522514
627 1.759363376
628 1.75917501
629 1.759043661
630 1.758874325
631 1.758745619
632 1.758527291
633 1.758114626
634 1.757846807
635 1.757645624
636 1.757275186
637 1.756913965
638 1.756674012
639 1.756292059
640 1.756086694
641 1.75601853
642 1.755887567
643 1.755655116
644 1.755354607
645 1.755011176
646 1.754568468
647 1.75422817
648 1.754056287
649 1.753822173
650 1.753401994
651 1.753069787
652 1.752724491
653 1.752619451
654 1.752498559
655 1.752433075
656 1.752205798
657 1.751829963
658 1.751781298
659 1.751689886
660 1.751534921
661 1.75140972
662 1.751202578
663 1.750790213
664 1.750579349
665 1.750350734
666 1.750054285
667 1.749795169
668 1.7496717
669 1.749473132
670 1.74925248
671 1.749125016
672 1.748932942
673 1.748756818
674 1.748636085
675 1.748519145
676 1.748388667
677 1.748119446
678 1.747999684
679 1.747797659
680 1.747480975
681 1.74712126
682 1.74683119
683 1.746640805
684 1.746263397
685 1.746091039
686 1.745974627
687 1.745486243
688 1.745222255
689 1.744954954
690 1.744753523
691 1.744658788
692 1.744568326
693 1.744203702
694 1.743899719
695 1.743463644
696 1.743270211
697 1.743085033
698 1.742874254
699 1.742477016
700 1.742099775
701 1.741861323
702 1.741473069
703 1.741316456
704 1.741124511
705 1.740830669
706 1.74069734
707 1.740425587
708 1.740273447
709 1.740243089
710 1.739997213
711 1.739876916
712 1.739498067
713 1.739185218
714 1.738871722
715 1.738631434
716 1.738602957
717 1.738334373
718 1.738149948
719 1.738026859
720 1.737892456
721 1.737646767
722 1.737486529
723 1.73720362
724 1.736858665
725 1.736794968
726 1.736608877
727 1.736582187
728 1.73630378
729 1.736277533
730 1.736217739
731 1.73596685
732 1.735942845
733 1.735598028
734 1.735568975
735 1.73546628
736 1.735250868
737 1.734964907
738 1.734867474
739 1.734486738
740 1.734242744
741 1.734031937
742 1.733912834
743 1.733685414
744 1.733372101
745 1.73319895
746 1.732981676
747 1.732888754
748 1.732681105
749 1.732515144
750 1.732402608
751 1.732210975
752 1.731990123
753 1.731876588
754 1.731649549
755 1.731503371
756 1.731419321
757 1.731231242
758 1.731098921
759 1.730934727
760 1.730531135
761 1.730318875
762 1.730295829
763 1.730174366
764 1.730003663
765 1.729982174
766 1.729742002
767 1.729401707
768 1.729209027
769 1.729031457
770 1.728768842
771 1.728236619
772 1.727930419
773 1.727601825
774 1.727475153
775 1.727173713
776 1.726789541
777 1.726727927
778 1.726625902
779 1.726515344
780 1.726459505
781 1.726321581
782 1.725935808
783 1.725650627
784 1.725460714
785 1.725313381
786 1.725160735
787 1.724812383
788 1.724460421
789 1.724440767
790 1.724387168
791 1.724319973
792 1.724293597
793 1.724135183
794 1.72391803
795 1.72359071
796 1.723389671
797 1.723204311
798 1.723185792
799 1.723079893
800 1.722805533
801 1.722684012
802 1.722471564
803 1.722370241
804 1.722225487
805 1.721969237
806 1.721830574
807 1.721641065
808 1.721592459
809 1.721326744
810 1.721081529
811 1.720798237
812 1.720744153
813 1.720629955
814 1.720413461
815 1.720216861
816 1.719901941
817 1.719628527
818 1.719534789
819 1.719438376
820 1.719293206
821 1.719212197
822 1.718739553
823 1.71871708
824 1.718419241
825 1.718327588
826 1.718234681
827 1.718070176
828 1.717847246
829 1.717703027
830 1.717418173
831 1.717228034
832 1.716963451
833 1.716627281
834 1.716432176
835 1.716370309
836 1.716196417
837 1.716085711
838 1.715904665
839 1.715718769
840 1.715421511
841 1.715326279
842 1.715199218
843 1.714958189
844 1.714630218
845 1.714346482
846 1.714071341
847 1.713977225
848 1.713870686
849 1.713829363
850 1.713463846
851 1.713241447
852 1.713103986
853 1.712882464
854 1.712783055
855 1.712560164
856 1.712467079
857 1.712037288
858 1.711801177
859 1.711715158
860 1.711452264
861 1.711114132
862 1.710869113
863 1.710537021
864 1.710487001
865 1.710404977
866 1.710135264
867 1.709852064
868 1.70979853
869 1.709541907
870 1.709410418
871 1.709161294
872 1.708877695
873 1.70882684
874 1.708696188
875 1.708508839
876 1.708404637
877 1.708275043
878 1.708147946
879 1.707883978
880 1.707761691
881 1.707557796
882 1.707372857
883 1.707191587
884 1.707104155
885 1.706916675
886 1.706679183
887 1.70651136
888 1.706271907
889 1.705995027
890 1.705825492
891 1.705685094
892 1.705456897
893 1.705324439
894 1.705207092
895 1.704687228
896 1.704413706
897 1.704320334
898 1.704139787
899 1.703856498
900 1.703580526
901 1.703472007
902 1.703204116
903 1.702979733
904 1.70266322
905 1.702382039
906 1.702175346
907 1.701971567
908 1.701565961
909 1.701353386
910 1.701146134
911 1.700888563
912 1.700799733
913 1.700629343
914 1.700480437
915 1.700347917
916 1.700097894
917 1.699834347
918 1.699611398
919 1.699465151
920 1.699345502
921 1.699116017
922 1.699017754
923 1.698917922
924 1.698833456
925 1.69858423
926 1.698486259
927 1.698143126
928 1.697948496
929 1.697861121
930 1.69774727
931 1.69758405
932 1.69742072
933 1.697170679
934 1.697043688
935 1.696888246
936 1.696607052
937 1.696468463
938 1.696269048
939 1.69618037
940 1.695981576
941 1.695864062
942 1.695669237
943 1.695213215
944 1.694936558
945 1.694732753
946 1.694513617
947 1.694425039
948 1.694335599
949 1.694216099
950 1.693960739
951 1.693787431
952 1.693628962
953 1.693518001
954 1.693275263
955 1.69310163
956 1.692961059
957 1.692868729
958 1.692604656
959 1.692489979
960 1.692068402
961 1.691987687
962 1.69187135
963 1.691522917
964 1.691353441
965 1.691207186
966 1.690995492
967 1.690673462
968 1.69034089
969 1.689982723
970 1.689870894
971 1.68971599
972 1.689611498
973 1.689278599
974 1.689097898
975 1.688777261
976 1.688497689
977 1.688281916
978 1.687978247
979 1.68770241
980 1.687586834
981 1.687463799
982 1.687382514
983 1.687304513
984 1.687067729
985 1.686992935
986 1.686921113
987 1.686852128
988 1.686671063
989 1.686567007
990 1.686312496
991 1.686134455
992 1.685961091
993 1.685876886
994 1.685797904
995 1.685723723
996 1.685635029
997 1.685567444
998 1.685272083
999 1.685111521
iter Passed Remaining
0 6 6417
1 12 6194
2 18 6105
3 23 5821
4 30 6096
5 36 6070
6 41 5955
7 47 5849
8 52 5748
9 57 5675
10 63 5707
11 68 5657
12 73 5603
13 78 5500
14 83 5482
15 87 5367
16 92 5348
17 97 5338
18 101 5252
19 105 5178
20 109 5123
21 114 5074
22 117 5010
23 121 4945
24 125 4892
25 129 4857
26 133 4804
27 137 4784
28 142 4767
29 146 4733
30 150 4712
31 156 4720
32 159 4684
33 163 4658
34 168 4634
35 171 4599
36 175 4577
37 179 4543
38 182 4506
39 186 4477
40 190 4447
41 193 4416
42 197 4393
43 200 4356
44 204 4333
45 208 4317
46 211 4292
47 215 4266
48 218 4242
49 221 4209
50 225 4202
51 229 4180
52 232 4157
53 236 4150
54 240 4126
55 245 4132
56 249 4126
57 252 4101
58 256 4087
59 259 4066
60 264 4072
61 268 4056
62 271 4040
63 275 4031
64 280 4039
65 284 4031
66 288 4016
67 292 4005
68 295 3991
69 298 3968
70 301 3945
71 306 3945
72 309 3928
73 312 3915
74 317 3915
75 320 3895
76 323 3882
77 327 3873
78 331 3864
79 335 3853
80 339 3852
81 342 3835
82 346 3826
83 350 3820
84 353 3808
85 357 3803
86 361 3793
87 365 3787
88 369 3778
89 372 3768
90 376 3759
91 380 3754
92 384 3751
93 387 3732
94 391 3731
95 396 3729
96 400 3726
97 403 3715
98 406 3703
99 410 3695
100 414 3686
101 418 3683
102 421 3673
103 426 3673
104 430 3670
105 434 3665
106 439 3665
107 442 3658
108 446 3647
109 450 3641
110 453 3631
111 457 3624
112 461 3621
113 466 3622
114 471 3625
115 475 3621
116 479 3616
117 483 3613
118 488 3613
119 492 3610
120 495 3599
121 500 3599
122 505 3603
123 509 3602
124 515 3606
125 520 3609
126 524 3606
127 529 3603
128 533 3605
129 538 3604
130 542 3596
131 546 3592
132 551 3592
133 556 3594
134 561 3595
135 565 3592
136 569 3589
137 573 3584
138 578 3580
139 582 3576
140 586 3576
141 590 3569
142 594 3563
143 599 3561
144 603 3555
145 606 3549
146 611 3545
147 616 3546
148 621 3551
149 625 3545
150 629 3540
151 634 3539
152 639 3539
153 643 3533
154 648 3534
155 653 3534
156 657 3530
157 662 3531
158 667 3532
159 672 3532
160 677 3529
161 680 3521
162 685 3519
163 689 3512
164 693 3510
165 697 3505
166 702 3505
167 705 3496
168 709 3490
169 713 3485
170 717 3477
171 721 3474
172 725 3468
173 728 3459
174 731 3449
175 736 3446
176 739 3439
177 743 3433
178 746 3425
179 750 3420
180 754 3413
181 757 3405
182 761 3400
183 764 3391
184 767 3382
185 771 3378
186 776 3374
187 780 3370
188 783 3363
189 787 3358
190 791 3352
191 795 3349
192 799 3342
193 803 3336
194 807 3331
195 811 3328
196 815 3324
197 818 3316
198 823 3313
199 826 3307
200 831 3303
201 835 3300
202 839 3296
203 844 3295
204 848 3292
205 853 3291
206 858 3289
207 863 3287
208 866 3279
209 870 3273
210 873 3266
211 877 3259
212 881 3255
213 884 3250
214 888 3242
215 891 3235
216 894 3229
217 899 3225
218 903 3222
219 907 3217
220 911 3212
221 915 3209
222 920 3207
223 924 3203
224 928 3199
225 932 3194
226 936 3188
227 940 3183
228 944 3181
229 949 3177
230 954 3176
231 958 3172
232 961 3165
233 965 3161
234 969 3155
235 973 3152
236 978 3148
237 982 3144
238 985 3139
239 990 3135
240 994 3130
241 998 3127
242 1002 3122
243 1006 3117
244 1010 3112
245 1014 3109
246 1019 3106
247 1022 3099
248 1025 3093
249 1029 3088
250 1033 3083
251 1037 3080
252 1042 3078
253 1047 3076
254 1051 3072
255 1056 3070
256 1060 3066
257 1065 3063
258 1068 3057
259 1073 3056
260 1078 3054
261 1084 3053
262 1089 3053
263 1094 3051
264 1099 3049
265 1104 3047
266 1107 3041
267 1112 3039
268 1118 3038
269 1123 3037
270 1127 3033
271 1133 3032
272 1138 3031
273 1142 3028
274 1147 3025
275 1151 3020
276 1154 3013
277 1159 3011
278 1164 3008
279 1167 3001
280 1171 2997
281 1176 2994
282 1181 2992
283 1185 2989
284 1189 2983
285 1193 2980
286 1198 2976
287 1203 2974
288 1207 2970
289 1212 2967
290 1216 2963
291 1220 2960
292 1225 2955
293 1229 2952
294 1233 2948
295 1237 2943
296 1241 2939
297 1246 2935
298 1251 2934
299 1256 2931
300 1259 2925
301 1264 2922
302 1268 2918
303 1272 2912
304 1275 2907
305 1279 2901
306 1283 2897
307 1285 2888
308 1289 2884
309 1293 2879
310 1298 2876
311 1302 2871
312 1306 2866
313 1310 2862
314 1313 2856
315 1317 2851
316 1321 2846
317 1325 2842
318 1329 2838
319 1332 2830
320 1335 2825
321 1339 2820
322 1342 2812
323 1345 2808
324 1348 2801
325 1353 2797
326 1357 2793
327 1361 2789
328 1365 2784
329 1369 2779
330 1373 2776
331 1378 2773
332 1382 2769
333 1386 2764
334 1390 2760
335 1395 2757
336 1399 2753
337 1403 2748
338 1407 2743
339 1411 2740
340 1416 2737
341 1420 2732
342 1425 2730
343 1430 2727
344 1434 2723
345 1438 2719
346 1442 2715
347 1446 2709
348 1450 2705
349 1454 2700
350 1458 2697
351 1463 2693
352 1467 2689
353 1470 2684
354 1474 2678
355 1478 2674
356 1482 2670
357 1486 2666
358 1491 2662
359 1495 2658
360 1499 2654
361 1502 2647
362 1507 2644
363 1511 2640
364 1515 2635
365 1518 2631
366 1522 2626
367 1527 2624
368 1531 2619
369 1535 2614
370 1539 2610
371 1544 2607
372 1548 2603
373 1552 2599
374 1557 2595
375 1561 2592
376 1564 2585
377 1568 2580
378 1572 2576
379 1575 2570
380 1579 2566
381 1583 2562
382 1588 2559
383 1592 2555
384 1596 2550
385 1601 2547
386 1604 2541
387 1608 2537
388 1612 2532
389 1616 2527
390 1620 2523
391 1623 2517
392 1626 2512
393 1630 2507
394 1634 2503
395 1638 2498
396 1642 2495
397 1646 2490
398 1649 2484
399 1652 2479
400 1655 2473
401 1658 2467
402 1662 2462
403 1665 2456
404 1668 2451
405 1671 2444
406 1675 2440
407 1679 2436
408 1683 2432
409 1685 2426
410 1689 2420
411 1692 2415
412 1695 2409
413 1697 2403
414 1701 2398
415 1704 2393
416 1707 2387
417 1712 2384
418 1716 2380
419 1719 2374
420 1723 2370
421 1727 2366
422 1731 2361
423 1735 2357
424 1738 2352
425 1742 2348
426 1746 2343
427 1750 2339
428 1753 2334
429 1757 2329
430 1761 2325
431 1765 2320
432 1769 2317
433 1773 2312
434 1777 2308
435 1780 2303
436 1784 2299
437 1788 2295
438 1793 2291
439 1797 2287
440 1800 2282
441 1805 2278
442 1809 2275
443 1812 2269
444 1817 2266
445 1821 2262
446 1825 2258
447 1830 2255
448 1833 2250
449 1837 2245
450 1841 2241
451 1844 2236
452 1847 2231
453 1852 2228
454 1856 2223
455 1860 2219
456 1864 2215
457 1868 2211
458 1872 2206
459 1876 2202
460 1881 2199
461 1885 2196
462 1890 2192
463 1894 2188
464 1899 2184
465 1902 2180
466 1907 2176
467 1911 2173
468 1916 2169
469 1921 2166
470 1926 2163
471 1930 2159
472 1934 2155
473 1938 2150
474 1942 2146
475 1947 2143
476 1951 2140
477 1956 2136
478 1961 2133
479 1966 2129
480 1970 2126
481 1975 2122
482 1980 2119
483 1984 2116
484 1988 2111
485 1993 2108
486 1998 2104
487 2002 2101
488 2007 2097
489 2011 2093
490 2016 2089
491 2020 2085
492 2024 2082
493 2029 2078
494 2033 2074
495 2037 2070
496 2042 2067
497 2047 2063
498 2052 2060
499 2056 2056
500 2061 2053
501 2065 2048
502 2068 2044
503 2073 2040
504 2078 2037
505 2082 2032
506 2086 2028
507 2090 2024
508 2094 2020
509 2099 2017
510 2103 2012
511 2107 2009
512 2112 2005
513 2116 2000
514 2121 1997
515 2127 1995
516 2132 1991
517 2136 1987
518 2140 1983
519 2143 1978
520 2147 1974
521 2151 1970
522 2155 1966
523 2160 1962
524 2164 1958
525 2168 1954
526 2171 1949
527 2176 1945
528 2180 1941
529 2184 1937
530 2189 1933
531 2193 1929
532 2197 1925
533 2202 1921
534 2206 1917
535 2210 1913
536 2215 1909
537 2218 1905
538 2222 1900
539 2226 1897
540 2230 1892
541 2235 1888
542 2239 1884
543 2243 1880
544 2247 1876
545 2251 1872
546 2256 1868
547 2262 1865
548 2265 1861
549 2269 1857
550 2275 1854
551 2279 1849
552 2283 1845
553 2286 1841
554 2291 1837
555 2296 1833
556 2299 1828
557 2304 1825
558 2308 1821
559 2313 1817
560 2317 1813
561 2322 1810
562 2327 1806
563 2331 1802
564 2336 1799
565 2340 1794
566 2345 1790
567 2349 1786
568 2353 1782
569 2359 1779
570 2364 1776
571 2367 1771
572 2372 1768
573 2377 1764
574 2382 1760
575 2385 1756
576 2389 1751
577 2393 1747
578 2397 1743
579 2401 1739
580 2406 1735
581 2410 1731
582 2414 1727
583 2419 1723
584 2423 1719
585 2427 1714
586 2432 1711
587 2435 1706
588 2440 1703
589 2445 1699
590 2450 1695
591 2454 1691
592 2459 1687
593 2462 1683
594 2467 1679
595 2471 1675
596 2474 1670
597 2479 1666
598 2482 1661
599 2486 1657
600 2491 1653
601 2494 1649
602 2498 1645
603 2501 1640
604 2507 1636
605 2510 1632
606 2514 1628
607 2519 1624
608 2524 1620
609 2527 1616
610 2531 1611
611 2536 1608
612 2541 1604
613 2546 1600
614 2550 1596
615 2554 1592
616 2558 1588
617 2562 1584
618 2567 1580
619 2572 1576
620 2575 1571
621 2579 1567
622 2584 1563
623 2588 1559
624 2592 1555
625 2595 1550
626 2600 1547
627 2605 1543
628 2609 1539
629 2614 1535
630 2619 1531
631 2623 1527
632 2628 1523
633 2631 1519
634 2635 1515
635 2640 1511
636 2644 1506
637 2648 1502
638 2652 1498
639 2656 1494
640 2660 1490
641 2664 1485
642 2668 1481
643 2672 1477
644 2676 1472
645 2681 1469
646 2685 1465
647 2689 1461
648 2694 1457
649 2699 1453
650 2703 1449
651 2707 1444
652 2710 1440
653 2714 1436
654 2719 1432
655 2724 1428
656 2728 1424
657 2732 1420
658 2736 1416
659 2741 1412
660 2745 1408
661 2749 1403
662 2753 1399
663 2757 1395
664 2762 1391
665 2767 1387
666 2771 1383
667 2775 1379
668 2780 1375
669 2784 1371
670 2788 1367
671 2793 1363
672 2797 1359
673 2803 1355
674 2807 1351
675 2812 1347
676 2816 1343
677 2820 1339
678 2824 1335
679 2827 1330
680 2832 1326
681 2837 1322
682 2842 1319
683 2846 1314
684 2850 1310
685 2854 1306
686 2859 1302
687 2863 1298
688 2868 1294
689 2872 1290
690 2876 1286
691 2880 1282
692 2885 1278
693 2889 1273
694 2893 1269
695 2898 1265
696 2902 1261
697 2906 1257
698 2911 1253
699 2915 1249
700 2920 1245
701 2925 1242
702 2930 1238
703 2933 1233
704 2938 1229
705 2943 1225
706 2948 1221
707 2952 1217
708 2956 1213
709 2960 1209
710 2965 1205
711 2970 1201
712 2974 1197
713 2978 1192
714 2981 1188
715 2985 1184
716 2989 1179
717 2994 1176
718 2998 1172
719 3003 1168
720 3023 1169
721 3027 1165
722 3032 1161
723 3037 1157
724 3042 1153
725 3047 1150
726 3051 1145
727 3056 1141
728 3060 1137
729 3064 1133
730 3069 1129
731 3073 1125
732 3078 1121
733 3082 1117
734 3087 1113
735 3091 1108
736 3094 1104
737 3098 1099
738 3103 1096
739 3108 1092
740 3112 1088
741 3117 1083
742 3123 1080
743 3127 1076
744 3131 1071
745 3136 1067
746 3140 1063
747 3143 1059
748 3147 1054
749 3151 1050
750 3155 1046
751 3159 1041
752 3163 1037
753 3167 1033
754 3173 1029
755 3176 1025
756 3181 1021
757 3186 1017
758 3189 1012
759 3194 1008
760 3198 1004
761 3202 1000
762 3207 996
763 3210 991
764 3214 987
765 3218 983
766 3222 978
767 3225 974
768 3229 970
769 3233 965
770 3238 961
771 3242 957
772 3247 953
773 3251 949
774 3256 945
775 3261 941
776 3265 937
777 3269 933
778 3274 928
779 3277 924
780 3281 920
781 3285 916
782 3289 911
783 3293 907
784 3297 903
785 3302 899
786 3305 894
787 3310 890
788 3314 886
789 3318 882
790 3323 878
791 3326 873
792 3331 869
793 3335 865
794 3339 861
795 3343 856
796 3348 852
797 3352 848
798 3356 844
799 3359 839
800 3364 835
801 3368 831
802 3373 827
803 3377 823
804 3383 819
805 3386 815
806 3390 810
807 3395 806
808 3399 802
809 3404 798
810 3408 794
811 3413 790
812 3418 786
813 3423 782
814 3428 778
815 3433 774
816 3437 770
817 3442 765
818 3446 761
819 3451 757
820 3456 753
821 3460 749
822 3464 745
823 3468 740
824 3473 736
825 3478 732
826 3482 728
827 3487 724
828 3492 720
829 3496 716
830 3500 711
831 3505 707
832 3510 703
833 3514 699
834 3518 695
835 3522 690
836 3527 686
837 3531 682
838 3536 678
839 3540 674
840 3545 670
841 3549 666
842 3554 661
843 3558 657
844 3563 653
845 3568 649
846 3573 645
847 3577 641
848 3582 637
849 3588 633
850 3592 629
851 3596 624
852 3602 620
853 3607 616
854 3610 612
855 3614 608
856 3618 603
857 3622 599
858 3626 595
859 3630 591
860 3634 586
861 3638 582
862 3643 578
863 3648 574
864 3652 570
865 3657 565
866 3661 561
867 3666 557
868 3670 553
869 3674 549
870 3679 545
871 3684 540
872 3690 536
873 3693 532
874 3698 528
875 3703 524
876 3706 519
877 3709 515
878 3714 511
879 3718 507
880 3722 502
881 3726 498
882 3731 494
883 3735 490
884 3739 485
885 3743 481
886 3748 477
887 3752 473
888 3756 469
889 3761 464
890 3766 460
891 3771 456
892 3777 452
893 3781 448
894 3785 444
895 3789 439
896 3793 435
897 3797 431
898 3802 427
899 3806 422
900 3810 418
901 3815 414
902 3819 410
903 3823 406
904 3827 401
905 3832 397
906 3836 393
907 3839 389
908 3844 384
909 3849 380
910 3853 376
911 3857 372
912 3862 368
913 3867 363
914 3870 359
915 3874 355
916 3878 351
917 3883 346
918 3887 342
919 3892 338
920 3896 334
921 3901 330
922 3905 325
923 3910 321
924 3914 317
925 3918 313
926 3923 308
927 3927 304
928 3932 300
929 3936 296
930 3939 291
931 3943 287
932 3948 283
933 3951 279
934 3956 275
935 3961 270
936 3965 266
937 3969 262
938 3974 258
939 3978 253
940 3983 249
941 3988 245
942 3993 241
943 3997 237
944 4001 232
945 4005 228
946 4009 224
947 4013 220
948 4017 215
949 4022 211
950 4027 207
951 4031 203
952 4035 199
953 4039 194
954 4044 190
955 4048 186
956 4052 182
957 4057 177
958 4062 173
959 4065 169
960 4070 165
961 4074 160
962 4078 156
963 4082 152
964 4086 148
965 4091 144
966 4096 139
967 4100 135
968 4104 131
969 4109 127
970 4113 122
971 4117 118
972 4121 114
973 4124 110
974 4129 105
975 4133 101
976 4139 97
977 4143 93
978 4147 88
979 4152 84
980 4156 80
981 4160 76
982 4164 72
983 4169 67
984 4173 63
985 4177 59
986 4182 55
987 4187 50
988 4191 46
989 4196 42
990 4200 38
991 4204 33
992 4208 29
993 4212 25
994 4217 21
995 4221 16
996 4225 12
997 4230 8
998 4235 4
999 4239 0
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
from loguru import logger
from scripts.core.data_puller_push.push_data import insert_values_3cp
class CalculatedDataPush:
def __init__(self, df_calculated, all_cal_tags_dict):
self.df_calculated = df_calculated
self.all_cal_tags_dict = all_cal_tags_dict
def kafka_data_push(self, df_calculated):
try:
logger.info(f"Calculated dict length = {len(self.all_cal_tags_dict)}")
logger.info(f"Calculated df shape with Date and Timestamp column = {df_calculated.shape}")
df_calculated_tags_dict = {col: self.all_cal_tags_dict[col] for col in df_calculated.columns
if col not in ('Date', 'timestamp')}
for i, j in df_calculated.iterrows():
my_dict = {v: j[k] for k, v in df_calculated_tags_dict.items()}
logger.info(f"{j['timestamp'], j['Date'], my_dict}")
insert_values_3cp(j['timestamp'], my_dict)
except Exception as e:
logger.exception(f'Exception - {e}')
import json
import pandas as pd
import requests
from loguru import logger
from scripts.constants.app_configuration import KairosDb
class KairosQuery:
def __init__(self, start_timestamp, end_timestamp, tag_dict):
self.start_timestamp = start_timestamp
self.end_timestamp = end_timestamp
self.kairos_host = KairosDb.uri
self.kairos_url = "{kairos_host}/api/v1/datapoints/query".format(kairos_host=self.kairos_host)
self.tag_dict = tag_dict
def kairos_query(self):
try:
return {
"metrics": [
{
"tags": {
"c3": list(self.tag_dict.keys())
},
"name": KairosDb.metric_name,
"group_by": [
{
"name": "tag",
"tags": ["c3"]
}
],
"aggregators": [
{
"name": KairosDb.aggregator,
"sampling": {
"value": KairosDb.aggregator_value,
"unit": KairosDb.aggregator_unit
}
}
]
}
],
"plugins": [],
"cache_time": 0,
"time_zone": "Asia/Calcutta",
"start_absolute": self.start_timestamp,
"end_absolute": self.end_timestamp,
}
except Exception as e:
logger.exception(f"Exception - {e}")
def get_data(self, data_query):
try:
logger.info("Data for the parameters being pulled from Kairos Database")
response = requests.post(self.kairos_url, data=json.dumps(data_query))
response_data = response.json()
output_data = response_data["queries"]
logger.debug("Data pull complete")
df_final = pd.DataFrame()
for i in range(len(output_data)):
grouped_output_data = output_data[i]["results"]
for each_grouped_data in grouped_output_data:
value = (each_grouped_data["values"])
tag_id = each_grouped_data["group_by"][0]["group"]["c3"]
try:
logger.debug("Renamed {} to {} in Data".format(tag_id, self.tag_dict[tag_id]))
column_name = self.tag_dict[tag_id]
except KeyError as e:
logger.exception(f'Exception - {e}')
logger.debug("Column Renaming Logic not found for {}".format(tag_id))
column_name = tag_id
df_column_data = pd.DataFrame(data=value, columns=["timestamp", column_name])
if df_final.empty:
df_final = df_column_data
else:
df_final = df_final.merge(df_column_data, how="outer", left_on="timestamp",
right_on="timestamp")
df_final['datetime'] = pd.to_datetime(df_final['timestamp'], unit="ms").dt.tz_localize('UTC').\
dt.tz_convert('Asia/Kolkata')
logger.debug("Final number of columns : {}".format(str(len(list(df_final.columns)))))
return df_final
except Exception as e:
logger.exception(f"Exception occurred - {e}", exc_info=True)
def kairos_data_import(self):
try:
logger.debug("Fetching live data")
query_live = self.kairos_query()
logger.info(f"query_live = {query_live}")
df = self.get_data(data_query=query_live)
return df
except Exception as e:
logger.exception(f"Exception - {e}")
from json import dumps
from kafka import KafkaProducer
from loguru import logger
from scripts.constants.app_configuration import Kafka
def insert_values_3cp(ts, my_dict):
kairos_writer = KairosWriter()
kairos_writer.write_data(
{
ts: my_dict
},
Kafka.kafka_topic
)
logger.info("Data pushed successfully!")
class KafkaProducerUtil:
def __init__(self):
try:
self.host = Kafka.kafka_host
self.port = Kafka.kafka_port
logger.debug(f"Connecting to Kafka with details: {self.host}, {self.port}")
kafka_broker = [self.host + ":" + str(self.port)]
self.producer = KafkaProducer(
bootstrap_servers=kafka_broker,
value_serializer=lambda v: v.encode('utf-8'),
api_version=(0, 10, 1))
self.producer.flush()
except Exception as e:
logger.error(f"Kafka connection error: {e}")
def publish(self, topic, data):
try:
kafka_response = self.producer.send(topic, data)
self.producer.flush()
logger.debug(f" Message sent to kafka with response: {kafka_response}")
return True
except Exception as e:
logger.error(e)
return False
class KairosWriter(KafkaProducerUtil):
def write_data(self, data_json, topic):
site_id = "site_116"
logger.debug(f"Data being pushed to kafka topic: {topic}")
msg_counter = 0
for k, v in data_json.items():
timestamp, data = self.data_validator(k, v)
timestamp = timestamp * 1000
write_json = {
"data": data,
"site_id": site_id,
"gw_id": "gw_{}".format(site_id.lstrip("site_")), # The lstrip(s) removes leading whitespace (on the left)
"pd_id": "pd_{}".format(site_id.lstrip("site_")), # The rstrip(s) removes the trailing whitespace (on the right)
"timestamp": timestamp,
"msg_id": msg_counter,
"partition": "",
"retain_flag": False
}
logger.debug(f"Timestamp: {timestamp}, Values: {data}")
self.publish(topic, dumps(write_json))
msg_counter += 1
return msg_counter
def audit_data(self, data_json, topic):
logger.debug(f"Audit Data being pushed to kafka topic: {topic}")
msg_counter = len(data_json)
for each in data_json:
self.publish(topic, dumps(each))
return msg_counter
@staticmethod
def data_validator(timestamp, data):
logger.debug("Validating the data to remove Nan values")
__temp__ = {}
for k, v in data.items():
if not k.startswith("site"):
continue
if isinstance(v, (int, float)) and str(v) not in ('nan', 'inf'): # This function will return True if the "v" is one of the types in the tuple.
__temp__[k] = v
return int(timestamp), __temp__
import pandas as pd
import numpy as np
from loguru import logger
from scripts.utils.pycaret_util import PycaretUtil
from scripts.utils.preprocessing import DataPreprocessing
from scripts.utils.mlflow_util import ModelLoad
class TrainingInference:
def __init__(self, df, df_train, df_test):
self.df = df
self.df_train = df_train
self.df_test = df_test
def data_training(self, inv_id, mppt_id):
try:
data_preprocessing = DataPreprocessing()
df_train_inv = self.df_train[self.df_train['inv_id'] == inv_id]
df_train_mppt = df_train_inv[df_train_inv['mppt_id'] == mppt_id]
x_train = df_train_mppt[['datetime', 'inv_id', 'mppt_id', 'hour', 'tilt_irradiance', 'voltage_mppt']]
y_train = df_train_mppt[['current_mppt']]
x_train_std, scaler_x = data_preprocessing.get_standardized_data(df=x_train,
param_list=['datetime', 'inv_id',
'mppt_id'])
y_train_std, scaler_y = data_preprocessing.get_standardized_data(df=y_train)
df_std = pd.concat([x_train_std, y_train_std], axis=1)
df_std.dropna(axis=0, inplace=True)
df_std.reset_index(drop=True, inplace=True)
model, pre_trained = ModelLoad().model_manager(df=df_std, target='current_mppt')
return model, scaler_x, scaler_y
except Exception as e:
logger.exception(f'Exception - {e}')
def data_inference(self, scaler_x, scaler_y, model, inv_id, mppt_id):
try:
df_test_inv = self.df_test[self.df_test['inv_id'] == inv_id]
df_test_mppt = df_test_inv[df_test_inv['mppt_id'] == mppt_id]
df_test_mppt.reset_index(drop=True, inplace=True)
x_test = df_test_mppt[['datetime', 'inv_id', 'mppt_id', 'hour', 'tilt_irradiance', 'voltage_mppt']]
y_test = df_test_mppt[['current_mppt']]
data_preprocessing = DataPreprocessing()
x_test_std = data_preprocessing.get_transform_std_data(df=x_test,
param_list=['datetime', 'inv_id', 'mppt_id'],
scaler=scaler_x)
y_test_std = data_preprocessing.get_transform_std_data(df=y_test, scaler=scaler_y)
predictions = model.predict(x_test_std).reshape(1, -1)
predictions = np.array(scaler_y.inverse_transform(predictions)).reshape(-1, 1)
y_test = scaler_y.inverse_transform(y_test_std)
return x_test, y_test, predictions
except Exception as e:
logger.exception(f'Exception - {e}')
import pandas as pd
from loguru import logger
class GetData:
@staticmethod
def current_voltage_mppt_data(df):
try:
current_column_list = [col_name for col_name in df if 'current' in col_name]
voltage_column_list = [col_name for col_name in df if 'voltage' in col_name]
current_column_list.sort()
voltage_column_list.sort()
df_mppt = pd.DataFrame()
for n_mppt in range(len(current_column_list)):
df_temp = df[['datetime', 'inv_id', 'date', 'hour', 'tilt_irradiance', voltage_column_list[n_mppt],
current_column_list[n_mppt]]]
df_temp['mppt_id'] = current_column_list[n_mppt]
df_temp['mppt_id'] = df_temp['mppt_id'].str.replace('current_', '')
df_temp.rename(columns={voltage_column_list[n_mppt]: 'voltage_mppt',
current_column_list[n_mppt]: 'current_mppt'}, inplace=True)
if df_mppt.empty:
df_mppt = df_temp
else:
df_mppt = pd.concat([df_mppt, df_temp], axis=0)
df_mppt.reset_index(drop=True, inplace=True)
df_mppt.sort_values(['inv_id', 'mppt_id'], inplace=True)
df_mppt.reset_index(drop=True, inplace=True)
return df_mppt
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def get_final_data(x_test, y_test, predictions):
try:
df_result = pd.DataFrame(index=[i for i in range(len(y_test))])
df_result['datetime'] = x_test['datetime']
df_result['actual_current_mppt'] = y_test
df_result['predicted_current_mppt'] = predictions
df_result['potential_current_mppt_loss'] = df_result['predicted_current_mppt'] - \
df_result['actual_current_mppt']
df_result.loc[df_result['potential_current_mppt_loss'] < 0, 'potential_current_mppt_loss'] = 0
df_result['hour'] = df_result['datetime'].dt.hour
df_result.loc[df_result['hour'].between(left=19, right=23, inclusive='both'),
'potential_current_mppt_loss'] = 0
df_result.loc[df_result['hour'].between(left=0, right=5, inclusive='both'),
'potential_current_mppt_loss'] = 0
df_result.drop(['hour'], axis=1, inplace=True)
df_result['total_potential_current_mppt_loss'] = df_result['potential_current_mppt_loss']. \
rolling(min_periods=1, window=len(df_result)).sum()
df_result.drop(['actual_current_mppt', 'predicted_current_mppt'], axis=1, inplace=True)
df_result = df_result.round(2)
df_result.reset_index(drop=True, inplace=True)
logger.info(f'{df_result.shape}')
return df_result
except Exception as e:
logger.exception(f'Exception - {e}')
import pandas as pd
from loguru import logger
from scripts.core.data_puller_push.data_puller import KairosQuery
from scripts.utils.reading_tags import GetTags
base_path = 'data_folder'
def get_tags_data(mppt_tags, start_timestamp, end_timestamp):
try:
get_tags = GetTags(base_path=base_path)
df_merged = pd.DataFrame()
for inv_id in list(mppt_tags['inv_id'].unique()):
df_tags_id = get_tags.get_tags_id(df=mppt_tags, inv_id=inv_id)
tags_dict = df_tags_id[['tag_id', 'parameter_name']].set_index('tag_id').T.to_dict(orient="records")[0]
tags_dict['site_107$dept_140$line_371$equipment_4115$tag_15828'] = 'tilt_irradiance'
df_data = KairosQuery(start_timestamp=start_timestamp,
end_timestamp=end_timestamp,
tag_dict=tags_dict).kairos_data_import()
df_data['inv_id'] = inv_id
if df_merged.empty:
df_merged = df_data
else:
df_merged = pd.concat([df_merged, df_data], axis=0)
logger.info(f' for inv- {inv_id}, {df_data.shape}')
logger.info(f'{df_merged.shape}')
df_merged['date'] = df_merged['datetime'].dt.date
df_merged['hour'] = df_merged['datetime'].dt.hour
logger.info(f'Final shape of merged dataframe = {df_merged.shape}')
df_merged.reset_index(drop=True, inplace=True)
# df_merged.to_csv(f'{base_path}/df_merged.csv', index=False)
return df_merged
except Exception as e:
logger.exception(f'Exception - {e}')
import mlflow
from loguru import logger
import pandas as pd
import re
import os
import pytz
from datetime import datetime
from scripts.constants.app_configuration import MlFlow, ReqTimeZone
from scripts.utils.pycaret_util import PycaretUtil
mlflow_tracking_uri = MlFlow.mlflow_tracking_uri
os.environ["MLFLOW_TRACKING_USERNAME"] = MlFlow.mlflow_tracking_username
os.environ["MLFLOW_TRACKING_PASSWORD"] = MlFlow.mlflow_tracking_password
os.environ["AZURE_STORAGE_CONNECTION_STRING"] = MlFlow.azure_storage_connection_string
os.environ["AZURE_STORAGE_ACCESS_KEY"] = MlFlow.azure_storage_access_key
mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_registry_uri(mlflow_tracking_uri)
client = mlflow.tracking.MlflowClient()
class ModelLoad(object):
def model_manager(self, df, target):
try:
experiment_id = self.create_experiment(experiment_name=MlFlow.experiment_name)
days, latest_run_id = self.fetch_latest_model(experiment_id=experiment_id,
run_name=MlFlow.run_name)
if days < int(MlFlow.model_check_param):
logger.debug(f'Using the pretrained model !')
energy_model = self.load_model_pyfunc(
model_path=self.forming_loading_path(latest_run_id=latest_run_id))
pre_trained = True
else:
pre_trained = False
run_id = self.creating_run(experiment_id=experiment_id, run_name=MlFlow.run_name)
with mlflow.start_run(run_id=run_id):
nested_run_id = self.creating_new_nested_run(experiment_id=experiment_id,
run_id=run_id,
nested=True)
with mlflow.start_run(run_id=nested_run_id, nested=True):
logger.debug(f'Creating the new model !')
energy_model, model_name, metrics, hyper_params = \
PycaretUtil().get_auto_ml_model(df=df, target=target)
self.log_model(model=energy_model, model_name=MlFlow.model_name)
self.log_metrics(metrics=metrics)
self.log_hyper_param(hyperparameters=hyper_params)
self.set_tag(run_id=nested_run_id, key="algorithm", value=model_name)
return energy_model, pre_trained
except Exception as e:
logger.exception(str(e))
@staticmethod
def create_experiment(experiment_name):
"""
Function is to create an experiment by passing experiment name
:param experiment_name: Name of the experiment
:return: Experiment id, Run id if any parent run is existing
"""
try:
experiment = mlflow.get_experiment_by_name(experiment_name)
if experiment:
exp_id = experiment.experiment_id
else:
mlflow.set_experiment(experiment_name)
experiment = mlflow.get_experiment_by_name(experiment_name)
exp_id = experiment.experiment_id
return exp_id
except Exception as e:
logger.exception(str(e))
@staticmethod
def creating_run(experiment_id, run_id=None, run_name=None, nested=False):
try:
latest_run_id = None
if run_id:
df = mlflow.search_runs([experiment_id])
run_id_list = list(df["run_id"])
if run_id in run_id_list:
return run_id
else:
run = client.create_run(experiment_id)
with mlflow.start_run(
experiment_id=experiment_id, run_name=run_name, run_id=run.info.run_id,
nested=nested) as run:
return run.info.run_id
elif run_name:
df = mlflow.search_runs([experiment_id])
if df.empty:
run = client.create_run(experiment_id=experiment_id, tags={"mlflow.runName": run_name,
"mlflow.user": MlFlow.user})
with mlflow.start_run(
experiment_id=experiment_id, run_id=run.info.run_id, run_name=run_name,
nested=nested) as run:
return run.info.run_id
else:
for index, row in df.iterrows():
if run_name == row.get("tags.mlflow.runName", ""):
latest_run_id = row.get("run_id")
if latest_run_id:
return latest_run_id
else:
run = client.create_run(experiment_id=experiment_id, tags={"mlflow.runName": run_name,
"mlflow.user": MlFlow.user})
with mlflow.start_run(
experiment_id=experiment_id, run_id=run.info.run_id, run_name=run_name,
nested=nested) as run:
return run.info.run_id
except Exception as e:
logger.exception(str(e))
@staticmethod
def creating_new_nested_run(experiment_id, run_id=None, nested=False):
"""
Function is to create a nested run
:param experiment_id: Experiment Id
:param run_id: run id
:param nested: nested Run
:return : return nested run id
"""
try:
with mlflow.start_run(experiment_id=experiment_id, run_id=run_id, nested=nested):
with mlflow.start_run(experiment_id=experiment_id, nested=True) as run:
return run.info.run_id
except Exception as e:
logger.exception(str(e))
@staticmethod
def log_model(model, model_name):
"""
Function is to log the model
:param model : model
:param model_name : model_name
:return: Boolean Value
"""
try:
mlflow.sklearn.log_model(model, model_name)
logger.info("logged the model")
return True
except Exception as e:
logger.exception(str(e))
@staticmethod
def log_metrics(metrics):
"""
Function is to log the metrics
:param metrics: dict of metrics
:return: Boolen value
"""
try:
updated_metric = dict()
for key, value in metrics.items():
key = re.sub(r"[\([{})\]]", "", key)
updated_metric[key] = value
mlflow.log_metrics(updated_metric)
logger.debug(f'logged the model metric')
return True
except Exception as e:
logger.exception(str(e))
@staticmethod
def log_hyper_param(hyperparameters):
"""
Function is to log the hyper params
:param hyperparameters: dict of hyperparameters
:return: Boolen value
"""
try:
mlflow.log_params(hyperparameters)
logger.debug(f'logged model hyper parameters')
return True
except Exception as e:
logger.exception(str(e))
def fetch_latest_model(self, experiment_id, run_name):
"""
Function is to fetch the latest run
:param experiment_id: Experiment Id
:return: return the difference in the days/Hours/Minutes of current and run time, latest run id
"""
try:
days = int(MlFlow.model_check_param) + 1
model_history = ""
latest_run_id = ""
if experiment_id:
run_id = self.get_parent_run_id(experiment_id, run_name)
run_info = mlflow.search_runs([experiment_id],
filter_string="tags.mlflow.parentRunId='{run_id}'".format(
run_id=run_id))
if not run_info.empty:
for ind in run_info.index:
model_history, days, latest_run_id = self.check_model_existing(run_info=run_info,
index=ind)
if model_history is not None:
break
if model_history is None:
days = int(MlFlow.model_check_param) + 1
logger.info("No Model is existing with this experiment")
return days, latest_run_id
except Exception as e:
logger.exception(f"Exception while fetching the latest model - {e}")
@staticmethod
def get_parent_run_id(experiment_id, run_name):
"""
Function is to fetch latest parent run id if available else latest run id
:param experiment_id: Experiment Id
:param run_name: Name of the run
:return: latest parent run id
"""
try:
result_run_id = None
df = mlflow.search_runs([experiment_id])
for index, row in df.iterrows():
parent_run_name = row.get("tags.mlflow.runName")
if parent_run_name == run_name:
result_run_id = row.get("run_id")
else:
logger.info(f"No Run is existing with this Experiment id - {experiment_id}")
return result_run_id
except Exception as e:
logger.exception(f"Exception while fetching the latest run_id - {e}")
def check_model_existing(self, run_info, index):
"""
Function is to check if model is existing or not
:param run_info: Dataframe of run details
:param index: index of which run from the dataframe
:return:
"""
try:
model_history = None
date_param = MlFlow.check_param
# Difference between the current date and latest available model date
days = self.format_mlflow_time(run_info=run_info, index=index, date_param=date_param)
latest_run_id = run_info.loc[index, 'run_id']
if 'tags.mlflow.log-model.history' in run_info:
model_history = run_info['tags.mlflow.log-model.history'][index]
if model_history:
model_history_list = model_history.split(":")
model_history = model_history_list[2].split(",")[0]
else:
logger.info("No Model is existing")
return model_history, days, latest_run_id
except Exception as e:
logger.exception(f"Exception while checking the model name - {e}")
@staticmethod
def forming_loading_path(latest_run_id):
"""
Function is to form the loading path
:param latest_run_id: Run id
:return : Return the loading path
"""
try:
model_name = MlFlow.model_name
model_path = f"runs:/{latest_run_id}/{model_name}"
return model_path
except Exception as e:
logger.exception(f"Exception while forming loading path - {e}")
@staticmethod
def format_mlflow_time(run_info, index, date_param):
"""
Formatting mlflow time
:param run_info: details of the runs
:param index: index of the run in the dataframe
:param: What type of the date param
:return: calculate the time difference between the mlflow time and the current time zone
"""
try:
df_time = run_info.copy()
df_time['end_time'] = pd.to_datetime(df_time['end_time']).dt.tz_convert(ReqTimeZone.required_tz)
df_time["days"] = df_time['end_time'].dt.date
df_time["hours"] = df_time['end_time'].dt.hour
df_required = df_time.iloc[index:index + 1:, :]
df_required.reset_index(drop=True, inplace=True)
last_model_time = df_required['end_time'][0].to_pydatetime()
central_current = datetime.now(pytz.utc).astimezone(pytz.timezone(ReqTimeZone.required_tz))
time_diff = central_current - last_model_time
if date_param.lower() == "days":
days_diff = int(time_diff.days)
return days_diff
elif date_param.lower() == "hours":
hours_diff = int(time_diff.total_seconds() // 3600)
return hours_diff
elif date_param.lower() == "minutes":
minutes_diff = int(time_diff.total_seconds() // 60)
return minutes_diff
else:
logger.info("No Valid Date format was given")
except Exception as e:
logger.exception(f"Exception while Loading the model - {e}")
@staticmethod
def set_tag(run_id, key, value):
"""
Function is to set the tag for a particular run
:param run_id: Run id in which the tags need to be added
:param key: Name of the key
:param value: what needs to tagged in the value
"""
try:
client.set_tag(run_id=run_id, key=key, value=value)
logger.debug(f'set the tag for the model')
except Exception as e:
logger.exception(f"Exception while setting the tag - {e}")
@staticmethod
def load_model_pyfunc(model_path):
"""
Function is load the sklearn model
:param model_path: path of the model
:return: boolen value
"""
try:
model = mlflow.pyfunc.load_model(model_path)
logger.info("loading the model")
return model
except Exception as e:
logger.exception(str(e))
import pandas as pd
from loguru import logger
import pytz
from datetime import datetime, timedelta
from scripts.constants.app_configuration import ReqTimeZone
from sklearn.preprocessing import MinMaxScaler
class DataPreprocessing:
@staticmethod
def remove_outliers(df, param_list):
try:
for col in param_list:
lb = df[col].mean() - 3 * df[col].std()
ub = df[col].mean() + 3 * df[col].std()
logger.debug(f"Min values of {col} = {df[col].min()} \nLower Bracket of {col} = {lb}")
logger.debug(f"Max values of {col} = {df[col].max()} \nUpper Bracket of {col} = {ub}")
logger.debug(f'Shape of df before outlier removal = {df.shape}')
df = (df[(df[col] > lb) & (df[col] < ub)])
logger.debug(f'Shape of df after outlier removal = {df.shape}')
logger.debug(f'Shape final df before outlier removal = {df.shape}')
return df
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def train_test_split(df):
try:
today_date = datetime.now(pytz.utc).astimezone(pytz.timezone(ReqTimeZone.required_tz)).date()
df = df[df['date'] != today_date]
yesterday_date = today_date - timedelta(days=1)
df_train = df[df['date'] < yesterday_date]
df_test = df[df['date'] == yesterday_date]
df_train.reset_index(drop=True, inplace=True)
df_test.reset_index(drop=True, inplace=True)
df_train.drop(['date'], axis=1, inplace=True)
df_test.drop(['date'], axis=1, inplace=True)
return df, df_train, df_test
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def get_standardized_data(df, param_list=None):
try:
if param_list is None:
scaler = MinMaxScaler()
df_std = pd.DataFrame(scaler.fit_transform(df), columns=list(df.columns))
return df_std, scaler
else:
scaler = MinMaxScaler()
df_std = pd.DataFrame(scaler.fit_transform(df.drop(param_list, axis=1)),
columns=list(df.drop(param_list, axis=1).columns))
return df_std, scaler
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def get_transform_std_data(df, scaler, param_list=None):
try:
if param_list is None:
df_std = pd.DataFrame(scaler.transform(df), columns=list(df.columns))
return df_std
else:
df_std = pd.DataFrame(scaler.transform(df.drop(param_list, axis=1)),
columns=list(df.drop(param_list, axis=1).columns))
return df_std
except Exception as e:
logger.exception(f'Exception - {e}')
\ No newline at end of file
from loguru import logger
from pycaret import regression
from scripts.constants.app_configuration import MlFlow, PycaretParams
class PycaretUtil:
def __init__(self):
self.model_list = PycaretParams.model_list.split(",")
self.selected_metric = PycaretParams.selected_metric
self.hyperparameter_tuning_method = PycaretParams.hyperparameter_tuning_method
def get_best_model(self, df, target):
try:
regression.setup(data=df, target=target)
best_model = regression.compare_models(include=self.model_list, sort=self.selected_metric,
n_select=1)
tuned_model = regression.tune_model(best_model, optimize=self.selected_metric,
search_library=self.hyperparameter_tuning_method)
results = regression.pull()
results.sort_values(self.selected_metric, ascending=False, inplace=True)
results.reset_index(drop=True, inplace=True)
get_best_model_row = results.iloc[0]
best_metrics = get_best_model_row.to_dict()
best_metrics.pop('Model', None)
return tuned_model, best_metrics
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def get_model_name(model):
try:
model_name = str(model).split('(')[0]
return model_name
except Exception as e:
logger.info(f"Unable to get the model name - {e}")
def get_auto_ml_model(self, df, target):
try:
model, metrics = self.get_best_model(df=df, target=target)
model_name = self.get_model_name(model)
hyper_params = model.get_params()
return model, model_name, metrics, hyper_params
except Exception as e:
logger.info(f"Unable to get the model name - {e}")
from loguru import logger
import pandas as pd
class GetTags:
def __init__(self, base_path):
self.base_path = base_path
def read_tag_excel(self):
try:
df = pd.read_excel(f'{self.base_path}/tags_download.xlsx')
df.drop(['Site', 'Plant', 'Line', 'Tag'], axis=1, inplace=True)
df.rename(columns={'Tag ID': 'tag_id', 'Tag Name': 'tag_name',
'Equipment': 'inv_id', 'Parameter Name': 'parameter_name'}, inplace=True)
return df
except Exception as e:
logger.exception(f'Exception - {e}')
def get_mppt_tags(self, df, substrings):
try:
data_with_substring = self.get_substring_data(substrings=substrings, df=df, column='parameter_name')
req_data_list = self.removed_substring(substring_data_list=data_with_substring,
remove_parameter='Efficiency')
df = self.get_substring_df(df=df, column='parameter_name', substring_data_list=req_data_list)
df.reset_index(drop=True, inplace=True)
df['parameter_name'] = df['parameter_name'].str.replace('Voltage MPPT ', 'voltage_mppt_')
df['parameter_name'] = df['parameter_name'].str.replace('Current MPPT ', 'current_mppt_')
df['inv_id'] = df['inv_id'].str.replace('INV ', 'inv_')
df['inv_id'] = df['inv_id'].str.replace('Plant ', 'plant')
df['mppt_id'] = df['parameter_name'].copy()
df['mppt_id'] = df['mppt_id'].str.replace('current_', '')
df['mppt_id'] = df['mppt_id'].str.replace('voltage_', '')
df = df.sort_values(['inv_id', 'mppt_id'])
df['mppt_id_with_equipment'] = df['parameter_name'] + '_' + df['inv_id']
df.reset_index(drop=True, inplace=True)
return df
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def get_tags_id(df, inv_id):
try:
df = df[df['inv_id'] == inv_id]
df = df[['tag_id', 'tag_name', 'inv_id', 'parameter_name', 'mppt_id',
'mppt_id_with_equipment']]
df.reset_index(drop=True, inplace=True)
return df
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def get_substring_data(substrings, df, column):
try:
req_substrings = substrings
data_with_substring = [data for data in df[column] if req_substrings in data]
return data_with_substring
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def removed_substring(substring_data_list, remove_parameter):
try:
req_data_list = [data for data in substring_data_list if remove_parameter not in data]
return req_data_list
except Exception as e:
logger.exception(f'Exception - {e}')
@staticmethod
def get_substring_df(df, column, substring_data_list):
try:
df = df.loc[df[column].isin(substring_data_list)]
df.reset_index(drop=True, inplace=True)
return df
except Exception as e:
logger.exception(f'Exception - {e}')
from datetime import datetime, timedelta
from scripts.constants.app_configuration import DateRange,ReqTimeZone
from loguru import logger
import pytz
class KairosStartEndDate:
@staticmethod
def start_end_date():
try:
local_timezone = pytz.timezone(ReqTimeZone.required_tz)
start_date_timestamp = DateRange.start_date
end_date_timestamp = DateRange.end_date
if (start_date_timestamp is not None) and (start_date_timestamp.lower() != "none"):
start_date = datetime.fromtimestamp((int(start_date_timestamp)/1000)).strftime('%Y-%m-%d %H:%M:%S')
start_date = datetime.strptime(start_date, "%Y-%m-%d %H:%M:%S")
start_date = start_date.astimezone(local_timezone).replace(hour=5, minute=0, second=0, microsecond=0)
else:
start_date = datetime.now(pytz.utc) - timedelta(days=int(DateRange.start_relative_days))
start_date = start_date.astimezone(local_timezone).replace(hour=5, minute=0, second=0, microsecond=0)
if (end_date_timestamp is not None) and (end_date_timestamp.lower() != "none"):
end_date = datetime.fromtimestamp((int(end_date_timestamp)/1000)).strftime('%Y-%m-%d %H:%M:%S')
end_date = datetime.strptime(end_date, "%Y-%m-%d %H:%M:%S")
end_date = end_date.astimezone(local_timezone).replace(hour=5, minute=0, second=0, microsecond=0)
else:
end_date = datetime.now(pytz.utc) - timedelta(days=int(DateRange.end_relative_days))
end_date = end_date.astimezone(local_timezone).replace(hour=5, minute=0, second=0, microsecond=0)
start_timestamp = int(start_date.timestamp())*1000
end_timestamp = int(end_date.timestamp())*1000
return start_date, end_date, start_timestamp, end_timestamp
except Exception as e:
logger.exception(f"Exception - {e}")
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment